Wireless Sensor Networks 2012-2022

Published Date » 2012-04-01
No. Of Pages » 342
The WSN business is set to become a multibillion dollar activity but only if there is major progress with standards and technology. This techno-marketing report scopes over 140 manufacturers and developers and looks closely at the impediments to rollout and how to overcome them. For example, today's power sources often stand in way of the desired 20 year life so the report looks closely at how energy harvesting can help and profiles 40 relevant power source manufacturers. Ten year WSN forecasts are made based on the very latest information.   Wireless Sensor Networks (WSN) - self organising, self healing networks of small "nodes" - have huge potential across industrial, military and many other sectors. While appreciable sales have new been established, major progress depends...
Table of Content

1.1. Replacing wired sensor systems
1.2. What is a mesh network?
1.3. The basic mesh network
1.4. IDTechEx forecasts
1.5. Node price trends.
1.6. IDTechEx forecast for 2032
1.7. Three generations of active RFID
1.8. Why the USA is ahead
1.9. Power for tags
1.10. Trend towards multiple energy harvesting

2.1. Active vs passive RFID
2.2. Three generations of active RFID
2.3. Second Generation is RTLS
2.4. Third Generation is WSN
2.4.1. Managing chaos and imperfection
2.4.2. The whole is much greater than the parts
2.4.3. Achilles heel - power
2.4.4. View from UCLA
2.4.5. View of Institute of Electronics, Information and Communication Engineers
2.4.6. View of the International Telecommunications Union
2.4.7. View of the Kelvin Institute
2.4.8. Contrast with other short range radio
2.4.9. A practical proposition
2.4.10. Wireless mesh network structure
2.5. Three waves of adoption
2.5.1. WSN leads RTLS
2.5.2. Subsuming earlier forms of active RFID?
2.6. Ubiquitous Sensor Networks (USN) and TIP
2.7. Defining features of the three generations
2.8. WSN paybacks
2.9. Supply chain of the future

3.1. Physical network structure
3.2. Power management
3.2.1. Power Management of mesh networks
3.3. Operating systems and signalling protocols
3.3.1. Standards still a problem
3.3.2. WSN as part of overall physical layer standards
3.3.3. Why not use ZigBee IEEE 802.15.4?
3.3.4. Protocol structure of ZigBee
3.3.5. IP for Smart Objects Alliance
3.3.6. WirelessHART, Hart Communication Foundation
3.3.7. ISA100.11a
3.3.8. IEEE 802.15.4a to the rescue?
3.3.9. 6lowpan and TinyOS
3.3.10. Associated technologies and protocols
3.3.11. ISA SP100
3.3.12. ISO/IEC 14543-3-10
3.4. Dedicated database systems
3.5. Programming language nesC / JAVA

4.1. General
4.2. Precursors of WSN
4.3. Intelligent buildings
4.3.1. WSN in buildings
4.3.2. Self-Powered Wireless Keycard Switch Unlocks Hotel Energy Savings
4.4. Military and Homeland Security
4.5. Oil and gas
4.5.1. EnerPak harvesting power management for wireless sensors
4.6. Healthcare
4.7. Farming
4.8. Environment monitoring
4.9. Transport and logistics
4.10. Aircraft

5.1. Geographical distribution of WSN practitioners and users
5.2. Profiles of 142 WSN suppliers and developers
5.3. Ambient Systems
5.3.1. Introduction
5.3.2. How Ambient Product Series 3000 works
5.3.3. The power of local intelligence: Dynamic Event Reporting
5.3.4. How SmartPoints communicate with the Ambient wireless infrastructure
5.3.5. Ambient Wireless Infrastructure - The power of wireless mesh networks
5.3.6. Ambient network protocol stack
5.3.7. Rapid Reader for high-volume data communication
5.3.8. Ambient Studio: Managing Ambient wireless networks
5.3.9. Comparing Ambient to wireless sensor networks (including ZigBee)
5.3.10. Comparing Ambient to active RFID and Real Time Locating Systems
5.4. Arch Rock
5.5. Auto-ID Labs Korea/ ITRI
5.6. Berkeley WEBS
5.6.1. Epic
5.6.2. SPOT - Scalable Power Observation Tool
5.7. Chungbuk National University Korea
5.8. Dust Networks
5.8.1. Smart Dust components
5.8.2. Examples of benefits
5.8.3. KV Pharmaceuticals
5.8.4. Milford Power
5.8.5. Fisher BioServices
5.8.6. PPG
5.8.7. Wheeling Pittsburgh Steel
5.8.8. SmartMesh Standards
5.8.9. US DOE project
5.9. Crossbow Technology
5.10. Emerson Process Management
5.10.1. Grane offshore oil platform
5.11. GE Global Research
5.12. Holst Research Centre IMEC - Cornell University
5.12.1. Body area networks for healthcare
5.13. Intel
5.14. Kelvin Institute
5.15. Laboratory for Assisted Cognition Environments LACE
5.16. Millennial Net
5.17. Motorola
5.18. National Information Society Agency
5.18.1. The vision for Korea
5.18.2. First trials
5.18.3. Seawater - oxygen, temperature
5.18.4. Setting concrete - temperature, humidity
5.18.5. Greenhouse microclimate - temperature, humidity
5.18.6. Hospital - blood temperature, drug temp and humidity
5.18.7. Recent trials
5.18.8. Program of future work
5.19. National Instruments WSN platform
5.20. Newtrax Technologies
5.20.1. Canadian military
5.20.2. Decentralised architecture
5.20.3. Inexpensive and expendable sensors
5.21. TelepathX
5.22. University of California Los Angeles CENS
5.23. University of Virginia NEST
5.23.1. NEST: Network of embedded systems
5.23.2. Technical overview
5.23.3. Programming paradigm
5.23.4. Feedback control resource management
5.23.5. Aggregate QoS management and local routing
5.23.6. Event/landmark addressable communication
5.23.7. Team formation
5.23.8. Microcell management
5.23.9. Local services
5.23.10. Information caching
5.23.11. Clock synchronization and group membership
5.23.12. Distributed control and location services
5.23.13. Testing tools and monitoring services
5.23.14. Software release: VigilNet
5.24. Wavenis and Essensium
5.24.1. Essensium's WSN product vision
5.24.2. Fusion of WSN, conventional RFID, RTLS and low power System on Chip integration
5.24.3. Concurrent skill sets to be applied
5.24.4. Integration with end customer.

6.1. Batteries
6.1.1. Customised and AAA / AA batteries
6.1.2. Planar Energy Devices
6.1.3. AlwaysReady Smart NanoBattery
6.1.4. Energy storage of batteries in standard and laminar formats
6.1.5. Future options for highest energy density
6.2. Laminar fuel cells
6.2.1. Bendable fuel cells: on-chip fuel cell on a flexible polymer substrate
6.3. Energy Harvesting
6.3.1. Energy harvesting with rechargeable batteries
6.3.2. Energy harvesting WSN at SNCF France
6.3.3. Photovoltaics
6.3.4. Battery free energy harvesting
6.3.5. Thermoelectrics in inaccessible places
6.3.6. Other options
6.3.7. Wireless sensor network powered by trees
6.4. Field delivery of power

7.1. Concerns about privacy and radiation
7.2. Reluctance
7.3. Competing standards and proprietary systems
7.4. Lack of education
7.5. Technology improvement and cost reduction needed
7.5.1. Error prone
7.5.2. Scalability
7.5.3. Sensors
7.5.4. Locating Position
7.5.5. Spectrum congestion and handling huge amounts of data
7.5.6. Optimal routing, global directories, service discovery
7.6. Niche markets lead to first success

8. MARKETS 2010-2022
8.1. Background
8.2. History and forecasts
8.2.1. IDTechEx forecasts 2010-2022
8.2.2. IDTechEx forecast for 2032
8.2.3. Market and technology roadmap to 2032
8.2.4. The overall markets for ZigBee and wireless sensing.

9.1. A123 Systems
9.2. Advanced Battery Technologies
9.3. Altairnano
9.4. BASF - Sion
9.4.1. BASF licenses Argonne Lab's cathode material
9.5. BYD
9.5.1. Volkswagen
9.5.2. Car superlatives
9.5.3. Plans for the USA
9.6. CapXX
9.7. Celxpert
9.8. China BAK
9.9. Cymbet
9.10. Duracell
9.11. Electrovaya
9.12. Enerize USA and Fife Batteries UK
9.13. Front Edge
9.14. Furukawa
9.15. Harvard
9.16. Hitachi Maxell
9.17. Holst
9.18. IBM
9.19. Infinite Power Solutions
9.20. Kokam America
9.21. LGChem
9.22. Microsemi
9.23. MIT
9.24. National Renewable
9.25. NEC
9.26. Nippon Chemi-Con Japan
9.27. Oak Ridge
9.28. Panasonic (formerly Matsushita, now owns Sanyo)
9.29. PolyPlus Battery
9.30. Planar
9.31. Renata
9.32. ReVolt
9.33. Saft
9.34. Sandia
9.35. Solicore
9.36. Superlattice
9.37. Tadiran
9.38. Tech Univ Berlin
9.39. Toshiba
9.40. Sony
9.41. Univ Calif
9.42. Virtual Extension



List of Tables


List of Figures


Upcoming Reports:

ECG Management Systems Market - Global Industry Analysis By Type, Size, Share And Forecast 2011 - 2016
By - Transparency Market Research
Global ECG Management Systems Market report provides 13 year data (2004 to 2011 Historical trend and 2012 to 2016 forecasts) for Global & 12 country markets (U.S., UK, Germany, France, Italy, Spain, Japan, China, India, Australia, Brazil & Canada) for ECG Management Systems sales (unit sales and revenue). The global & country data contained in the report is in cross-section with four major segments of ECG Management Systems i.e. Rest ECG Monitoring Systems (Single Channel, 3 Channel, 6 Channels and 12 Channels), ECG Stress Testing Systems (Local and Imported),...
Electroactive Polymers Market - Global Industry Analysis, Size, Growth, Share, And Forecast, 2012 - 2018
By - Transparency Market Research
Polymers exhibiting change in their size and shape in the presence of an electric field are referred to as electroactive polymers. They are most commonly used in sensors and actuators, as they can withstand large force. Conductive plastics emerged as the leading type of electroactive polymer which accounted for approximately 84.2% of the total electroactive market revenue in 2011.  North America was the biggest market for electroactive polymers followed by Europe and Asia Pacific. Some of the major factors driving the global market for electroactive polymers include...
Poland: vacuum cleaners market
By - Williams and Marshal Strategy
This report presents a comprehensive overview of the vacuum cleaners market in Poland and its state as of January 2014. It provides detailed analysis of the industry, its dynamics and structure. The purpose of the report is to describe the state of the vacuum cleaners market in Poland, to present actual and retrospective information about the volumes and dynamics of production, imports, exports and consumption, the characteristics of the market for the period 2008-2012 and to build a forecast for the market development until 2018. In the same way, the report presents an elaborate overview...

Research Assistance

We will be happy to help you find what you need.
Please call us or write us:

866-997-4948 (Us-Canada Toll Free)
Tel: +1-518-618-1030
Select License type:

Share this report

Related News

A Health Tech Incubator Started by GE Healthcare
Oct 30, 2014  
For the very first time, a health tech start up campus has been established by GE Healthcare at its headquarters at Helsinki, Finland. This area already has about twenty such healthcare start ups that are working on cloud services, wireless technologies, apps, and sensors that aim at improving healthcare. The main rationale behind such a step is providing opportunities for further...
Net Earnings of DuPont Increases 52% despite Agricultural Turmoil
Oct 29, 2014  
DuPont - The Wilmington, Del-based leading chemical company faced decline of three percent sales to $7.5 billion in the quarter ending of September 30. The company’s third-quarter earnings were increased by 52 percent to $433 million albeit the slow global growth and agricultural downside.   The company witnessed the biggest drags from chemical sales with eight percent...
Appeal for Sanitization in Construction Industry through Government Regulations: CIOB Ghana
Oct 29, 2014  
Rockson Dogbegah - The Chairman of the Chartered Institute of Building Ghana commented that the construction industry needs a thorough cleaning up and assurance of proper growth. Mr. Dogbegah also said that a few factors are extremely important for a proper development in the construction industry. These include keen adherence to standards, supreme sense of professionalism, and sheer pursuance...
Facebook Hints of Rise in Expenses in 2015, Shares Drop
Oct 29, 2014  
Facebook has announced on Tuesday that it is prepping for a dramatic rise in spending in the year 2015. This warning has come combined with a projected slowdown in the company’s revenues after revenues were analyzed at the end of the third quarter of the year. The plans of such hefty spending in the next financial year by the company are indicative of stress in the investor...
China to Invest in UKs Infrastructure Industry
Oct 28, 2014  
As per industry reports, it is expected that in the year 2015, the UK infrastructure will derive benefits from 105 billion pounds of Chinese money. This will involve a host of Chinese machinery suppliers, contractors, and materials producers. The UK government will be spending about half of 225 billion pounds on its own infrastructure. The investors from China will be investing...