ResearchMoz

Transparent Conductor Markets 2012

NanoMarkets
Published Date » 2012-08-12
No. Of Pages » 216
   
 NanoMarkets believes that the next few years will be a turning point for the transparent conductor (TC) business.  We foresee opportunities for novel TCs where, for the first time, newer materials have unquestionable market advantages over ITO.  This report provides the necessary strategic insight into how TC firms can best generate new business revenues from the rapidly changing business environment in the display and solar panel sectors. It also provides insight into niche applications such as smart windows, BIPV, etc. 
   
 Manufacturers of alternative TCs have looked toward the day when flexible displays hit the market, since ITO cannot be used in such displays.  That day is now at hand with the first flexible displays from Samsung hitting the market within a...
Table of Contents

Executive Summary
E.1 Transparent Conductors:  In Need of a Strategic Reboot?
E.2 Touch-Screen Sensor Markets Reevaluated: Room for Just So Many TC Providers?
E.3  Flexibility:  A Paradigm Change for the Transparent Conductor Industry?
E.3.1 Do Flexible Displays Represent a Growth Market for Alternative Transparent Conductors?
E.4 What the OLED Explosion Means for Transparent Conductor Makers
E.4.1 Transparent Conductors for the OLED Market Explosion
E.5 Will the LCD Industry Ever Open Up to Alternative Transparent Conductors?
E.6 Better Times Ahead for Selling Transparent Conductors into the PV Space
E.7 Firms and Materials to Watch in the Transparent Conductor Space
E.7.1 For ITO Suppliers Looking for Something to Worry About
E.7.2 Silver Linings:  The Rapid Rise of Silver and Metal Meshes
E.7.3 Still Hope for Carbon Nanotubes?
E.7.4 TCs of the Future:  The "Fourth Generation"
E.8 Summary of Eight-Year Market Forecasts For Transparent Conductor Markets
 
Chapter One: Introduction
1.1 Background to this Report
1.1.1 The Year 2012 Will Be A Quiet One for the ITO Alternative Business
1.1.2 The Arguments Against ITO Should Be Reconsidered
1.1.3 A Better Case for Alternatives to ITO in 2012 and Beyond
1.1.4 OLEDs, Flexibility and the Transformation of the End-User Market for Alternative Transparent Conductors in 2013
1.1.5 The Next Generation of Transparent Conductors:  Coming Soon?
1.2 Objectives and Scope of this Report
1.3 Methodology of this Report
1.4 Plan of this Report
 
Chapter Two: Transparent Conductors—New Technology and Market Developments
2.1 Developments in the ITO Market
2.1.1 Status and Evolution of the ITO Supply Chain and ITO Technology
2.1.2 The ITO Business:  Major Players
2.1.3 Traditional Film Deposition Methods and Parameters
2.2 Printed ITO, Sol-Gel, and Other Manufacturing Innovations
2.2.1 ITO Inks:  Perhaps a Brighter Future?
2.3 ITO Film Markets
2.4 Indium and the China Factor
2.4.1 Indium Production Trends
2.4.2 Recent Changes in Chinese Government Policy and its Impact on the Indium Market
2.4.3 Do Indium Prices Really Matter to the ITO Market?
2.4.4 How Market Uncertainties Will Shape the ITO Markets:  A Final Word on China
2.4.5 Recycling, Reclamation and Improved Processing of ITO
2.5 Other Transparent Conducting Oxides:  Past Failures But Future Successes?
2.5.1 Tin Oxide and its Variants
2.5.2 Zinc Oxide and its Variants
2.5.3 More TCOs for the Future?
2.5.4 Are Other TCOs Really a Drop-In Replacement?
2.2.5 Why Would PV Ever Leave TCOs?
2.6 Silver Grids, Coatings and Inks:  Onwards and Upwards
2.6.1 Silver and Other Metallic Coatings
2.6.2 Silver Grids Large and Small
2.6.3 Cambrios and the Others:  Nanosilver and Value-Added
2.7 Are there Opportunities for Copper in the Transparent Conductor Market?
2.8 Carbon Nanotubes:  Slow to Emerge but Could They Win in the End?
2.8.1 The Advantages and Disadvantages of Carbon Nanotubes for  Transparent Conductors
2.8.2 Limiting the Carbon Nanotube: Making Them "Just Conductors"
2.8.3 Derivatization of Carbon Nanotubes
2.8.4 Carbon Nanotube Transparent Conductors and Suppliers
2.8.5 A Coda on the Future of Carbon Nanotube-Based Transparent Conductors
2.9 The Latest on Where Graphene Stands as a Transparent Conductor
2.10 Conductive Polymers as Transparent Conductors
2.10.1 Transparent Conductive Polymers: How Far Can Performance be Pushed?
2.10.2 Cost Trends for PEDOT:PSS
2.10.3 PEDOT Suppliers for Transparent Conductor Applications
2.10.4 Possible Technology Developments in Conductive Polymers
2.11 Other Developments:  Fourth-Generation Transparent Conductors
2.12 Key Points Made in this Chapter
 
Chapter Three: Forecasting Methodology and Assumptions for Markets Analyzed in this Report
3.1 Market Segments Covered in this Report:  Differences from Previous NanoMarkets Reports
3.1.1 Adding Coverage of Transparent Conductors for Flexible and Transparent Electronics
3.1.2 Other Coverage-Related Factors and Reconsideration of Likely Penetration by non-ITO Transparent Conductors
3.2 Forecasting Methodology and Assumptions
3.2.1 Materials Covered in the Forecast
3.2.2 Assumptions About Materials Utilization, Wastage and Yields
3.2.3 Cost Assumptions
3.2.4 General Economic Assumptions
3.2.5 Sources of Data
 
Chapter Four: Display- and Lighting-Related Markets for Transparent Conductors:  Eight-Year Forecasts
4.1 Conventional Liquid Crystal Displays: Stuck On ITO?
4.1.1 Continued Limiting Factors on the Use of Novel Transparent Conductors
4.1.2 How and When non-ITO Transparent Conductor Firms Will Break into the LCD Market
4.1.3 Strategies for non-ITO Transparent Conductor Firms in the LCD Market
4.1.4 Eight-Year Forecasts of Transparent Conductors in the Flat-Panel Display Industry
4.1.5 Notes on Transparent Conductors in Plasma Displays
4.1.6 A Note on the Impact of Transparent Displays on the Transparent Conductor Market
4.2 Touch Screens:  Why Transparent Conductor Firms Love Them
4.2.1 Why the Touch-Screen Sector Has Become So Important to Suppliers of Transparent Conductors
4.2.2 Changes in the Transparent Conductor Customer Base in the Touch-Screen Sensor Industry
4.2.3 Projected-Capacitive Touch Sensors as a Market for Transparent Conductors
4.2.4 The Analog-Resistive Touch Sensors as a Market for Transparent Conductors
4.2.5 Other Touch-Related Opportunities for Transparent Conductors
4.2.6 Eight-Year Forecasts of Transparent Conductors in the Touch-Screen Sensor Industry
4.3 Flexible Electronics Mythologies and Realities: Their Impact on the Transparent Conductor Market
4.3.1 Flexible Displays:  Technology Constraints and Transparent Conductor Choice
4.3.2 Types of Flexible Displays and Likely Market Acceptance:  Implications for Transparent Conductors
4.3.3 Transparent Conductors for Roll-to-Roll Processing
4.4 Transparent Conductors for the New OLED Market
4.4.1 The OLED Industry Leaps Forward
4.4.2 Unique Advantages of OLEDs
4.4.3 How OLEDs Potentially Shrink the TC Market
4.4.4 The Quest to Get Rid of ITO in OLEDs
4.4.5 Transparent Conductors in Active Matrix OLED Displays
4.4.6 OLED Lighting Markets for Transparent Conductors
4.4.7 Eight-Year Forecasts of Transparent Conductors in the OLED Display and Lighting Market
4.5 E-Paper and Transparent Conductors:  A Niche Market for the Alternative Transparent Conductor Business
4.5.1 Varieties of E-Paper Displays and their TC Requirements
4.5.2 Shifts from ITO in the E-Paper Space
4.5.3 Eight-Year Forecasts of Transparent Conductors in the E-Paper Display and Lighting Market
4.6 Key Points Made in this Chapter
 
Chapter Five:  Solar Panel Markets for Transparent Conductors:  Eight-Year Forecasts
5.1 Thin-Film Photovoltaics: Where ITO has Already Met Its Match
5.1.1 The Coming Renaissance for Thin-Film PV:  Implications for the Transparent Conductor Business
5.1.2 Transparent Conductor Usage for the Thin-Film Silicon PV Sector
5.1.3 CdTe PV:  Long-Term Changes in Transparent Conductor Usage
5.1.4 CIGS PV:  A New Hope for Transparent Conductor Usage
5.1.5 Eight-Year Forecasts of Transparent Conductors in the Thin-Film  PV Market
5.2 Organic PV and Dye Sensitized Cells: A Worthwhile Market for Transparent Conductor Suppliers
5.2.1 DSC and Transparent Conductors
5.2.2 Organic PV and Transparent Conductors
5.2.3 Eight-Year Forecasts of Transparent Conductors in the OPV/DSC Market
5.3 BIPV and Transparent Conductors
5.4 Transparent Conductors and Flexible PV
5.5 Key Points Made in this Chapter
 
Chapter Six:  Windows and Other Markets for Transparent Conductors:  Eight-Year Forecasts
6.1 The Importance of Other Markets for Transparent Conductors
6.2 IR and UV Protection Opportunities for Transparent Conductors
6.3 Antistatic Applications for Transparent Conductors
6.3.1 Antistatic Markets in the Building Products Industry
6.3.2 ESD Applications for the Electronics Market
6.3.3 Tin Oxide as an Antistatic Coating
6.3.4 Zinc Oxide as an Antistatic Coating
6.3.5 Eight-Year Forecast of Transparent Conductors for Antistatic Coatings
6.4  Transparent Conductors in EMI/RFI Shielding
6.4.1 Eight-Year Forecast of Transparent Conductors for EMI Shielding
6.5 Smart Windows Applications for Transparent Conductors
6.5.1 Low-E Windows
6.5.2 Solar Control Films
6.5.3 Electrochromic (EC) and Suspended Particle Device (SPD) Technologies
6.5.4 PDLC Active On-Demand Smart Windows
6.5.5 Thermochromic Smart Glass
6.5.6 Self-Cleaning Windows
6.5.7 Eight-Year Forecast of Transparent Conductors for Smart Windows
6.6 Yet Other Markets for Transparent Conductors
6.7 Key Points Made in this Chapter
 
Chapter Seven:  Summary of Eight-Year Forecasts of Transparent Conductor Markets
7.1 Eight-Year Forecasts of ITO and Other Transparent Conductors by  Material Type
7.1.1 Eight-Year Forecast of ITO Markets
7.7.2 Eight-Year Forecast of non-ITO TCO Markets
7.7.3 Eight-Year Forecast of ITO/TCO Ink Markets
7.7.4 Eight-Year Forecast of Carbon Nanotube-based Transparent Conductor Markets
7.7.5 Eight-Year Forecast of Silver-based Transparent Conductors Film Markets
7.7.6 Eight-Year Forecast of Other Metallic Transparent Conductor Markets
7.7.7 Eight-Year Forecast of Transparent Conductive Polymer Markets
7.7.8 Eight-Year Forecast of Other Transparent Conductor Materials Markets
7.8 Summary of Market Forecasts by Material and Application Type
7.8.1 Summary by Type of Material
7.8.2 Summary by Applications
7.9 Summary of ITO Forecasts by Type of ITO Product: Targets, Film and  Coated Glass
7.10 Final Thoughts on Alternative Scenarios for Transparent Conductor Materials

List of Tables


Exhibit E-1: Addressable Markets for non-ITO Transparent Conductors
Exhibit E-2: Potential Opportunities for non-ITO Transparent Conductors in the Flexible Display Market
Exhibit E-3: Long-Term Issues that ITO Faces in the OLED Market
Exhibit E-4: PV Trends and their Impact on the Transparent Conductor Market
Exhibit E-5: Transparency of Transparent Conductive Material Types
Exhibit E-6: Sheet Resistance of Transparent Conductive Material Types
Exhibit E-7: Summary of Eight-Year Forecasts of Transparent Conductive Materials by Material Type ($ Millions)
Exhibit E-8: Summary of Eight-Year Forecasts of Transparent Conductive Materials by Application ($ Millions)
Exhibit 2-1: ITO Products in Current Use
Exhibit 2-2: Refinery Production of Indium
Exhibit 2-3: Selected Major Indium Firms in China
Exhibit 2-4: Indium Price and Production Trends (Values in Metric Tons Unless Noted)
Exhibit 2-5: ITO in the Display BOM:  A Thought Experiment ($, except final line)
Exhibit 2-6: Markets for FTO Coated Functional Glass by Utilization
Exhibit 2-7: Selected Projects and Collaborations in the CNT TC Space
Exhibit 2-8: Agfa's Conductive ORGACON Coatings
Exhibit 2-9: Heraeus' Clevios Material Properties
Exhibit 2-10: PEDOS Properties
Exhibit 3-1: NanoMarkets' Perspective and Expectations of Penetration of Selected Transparent Conductor Materials
Exhibit 3-2: Cost of Transparent Conductive Material Types: NanoMarkets' Estimates for 2012
Exhibit 4-1: Important Requirements for Transparent Conductors Used for LCD Displays
Exhibit 4-2: Forecast of Transparent Conductive Materials Demand in Flat-Panel Displays (LCD and PDP)
Exhibit 4-3: Forecast of Transparent Conductive Materials by Type in Flat-Panel Displays
Exhibit 4-4: Important Parameters for Transparent Conductors Used for Plasma Displays
Exhibit 4-5: A Provisional Roadmap for Transparent Electronics
Exhibit 4-6: Important Parameters for Transparent Conductors Used for Touch-Screen Sensors
Exhibit 4-7: Why the Touch Sensor Business is Attractive for Transparent Conductor Makers
Exhibit 4-8: Touch-Screen Technologies by Size and Multi-Touch Functionality
Exhibit 4-9: Forecast of Transparent Conductive Materials Requirements in Touch-Screen  Display Sensors
Exhibit 4-10: Forecast of Transparent Conductive Materials by Type in Touch-Screen Display Sensors
Exhibit 4-11: Flexibility of Transparent Conductive Material Types
Exhibit 4-12: Selected Flexible Display Frontplane Technologies
Exhibit 4-13: Important Parameters for Transparent Conductors Used for OLED Display Electrodes
Exhibit 4-14: Important Requirements for Transparent Conductors Used for OLED Lighting Electrodes
Exhibit 4-15: OLED Lighting Manufacturing Facilities by Selected Companies 135
Exhibit 4-16: Forecast of Transparent Conductive Materials Requirements in OLED Displays (Excludes OLED Lighting)
Exhibit 4-17: Forecast of Transparent Conductive Materials Requirements in OLED Displays (Excludes OLED Lighting)
Exhibit 4-18: Forecast of Transparent Conductive Materials Requirements in OLED Lighting
Exhibit 4-19: Forecast of Transparent Conductive Materials by Type in OLED Lighting
Exhibit 4-20: Important R for Transparent Conductors Used for EPDs
Exhibit 4-21: Forecast of Transparent Conductive Materials Demand in E-Paper Displays
Exhibit 4-22: Forecast of Transparent Conductive Materials by Type in E-Paper Displays
Exhibit 5-1: A Profile of the Thin-Film PV Industry Considered by Type of Absorber Layer
Exhibit 5-2: Important Parameters for Transparent Conductors Used for PV Electrodes
Exhibit 5-3: CIGS PV Competitors in 2011
Exhibit 5-4: Known TCOs In Commercial CIGS/CIS
Exhibit 5-5: Forecast of Transparent Conductive Materials Requirements in Thin-Film and Organic Photovoltaics
Exhibit 5-6: Forecast of Transparent Conductive Materials by Type in Thin-Film and Organic PV
Exhibit 5-7: Forecast of Transparent Conductive Materials Requirements in OPV/DSC
Exhibit 5-8: Forecast of Transparent Conductive Materials by Type in OPV/DSC
Exhibit 6-1: Forecast of Transparent Conductive Materials by Type in Antistatic Coatings
Exhibit 6-2: Forecast of Transparent Conductive Materials by Type in Electromagnetic Shielding
Exhibit 6-3: Total High Quality Float Glass Market for Thermochromic, Photochromic Low-E Windows (Millions of m2)
Exhibit 7-1: Summary of Forecast of ITO by Application ($ Millions, except for final line)
Exhibit 7-2: Summary of Forecast of Non-ITO TCOs by Application ($ Millions, except for final line)
Exhibit 7-3: Summary of Forecast of ITO and TCO Inks by Application  ($ Millions, except for final line)
Exhibit 7-4: Summary of Forecast of Carbon Nanotube Films by Application  ($ Millions, except for final line)
Exhibit 7-5: Summary of Forecast of  Silver Films and Grids by Application ($ Millions, except for final line)
Exhibit 7-6: Summary of Forecast of Other Metallic Films by Application ($ Millions, except for final line)
Exhibit 7-7: Summary of Forecast of Transparent Conductive Polymers by Application ($ Millions, except for final line)
Exhibit 7-8: Summary of Forecast of Other TCs by Application ($ Millions, except for final line)
Exhibit 7-9: Summary of Eight-Year Forecasts of Transparent Conductive Materials
Exhibit 7-10: Summary of Forecasts of  TC Market by Application ($ Millions, except for final line)
Exhibit 7-11: ITO Market by End User Product/Process  ($ Millions)

List of Figures

Upcoming Reports:

Specialty Chemicals Market - Global Industry Analysis, Size, Share, Growth, Trends And Forecast, 2013 - 2019
By - Transparency Market Research
Materials including surfactants, adhesives, polymers, lubricants, food additives, industrial gases, cleaning materials, elastomers and agrichemicals among others are classified as specialty chemicals. Specialty chemicals are materials which as classified under this category based on their performance or function. These chemicals are used in a wide range of industries such as aerospace, automotives, textiles, water treatment, industrial manufacturing, electronics, food and cosmetics among others. Rapid industrialization, particularly in Asia Pacific, is one of the key factors which...
Opportunities of Composites in the Global Automotive Market - Global Industry Size, Market Share, Trends, Analysis, and Forecast, 2012 - 2018
By - Transparency Market Research
Composites (glass fibers, resins, and carbon fibers) find their application in several sectors of the global market including the automotive market. There are several benefits of using composites in vehicles. It renders greater resistance to heat, makes the car lighter, and improves the fuel efficiency of the vehicle. New infrastructure projects, growth in population, environmental awareness, and urbanization are some of the factors likely to drive the market of composites in the automotive industry. Some of the factors hampering the growth of composites in the automotive...
Methicillin-Susceptible Staphylococcus Aureus (MSSA) Market - Global Industry Analysis, Size, Share, Growth, Trends And Forecast 2014 - 2020
By - Transparency Market Research
Methicillin-susceptible staphylococcus aureus (MSSA) infections are the infections caused by gram-positive bacterium. Staphylococcus aureus is the common pathogen in the skin, bone, central nervous system, pulmonary and soft tissues. These bacteria produce beta-lactamase which is the major cause of the infection. MSSA infection may lead to the skin allergies, pneumonia and endocarditis. Methicillin-susceptible staphylococcus aureus market is segmented on the basis of the treatment methods used for treating infections which are as follows: Semi-synthetic penicillin (intravenous...

Research Assistance

We will be happy to help you find what you need.
Please call us or write us:

866-997-4948 (Us-Canada Toll Free)
Tel: +1-518-618-1030
Email: sales@researchmoz.us
Select License type:

Share this report

Related News

World Cup Stadium at Qatar to be Renovated for 2022 FIFA World Cup
Nov 26, 2014  
The design for renovation of the Khalifa International Stadium will soon be unveiled by the organization that is responsible for building the infrastructure and stadiums for the 2022 FIFA World Cup Qatar. The main construction work on the stadium is being looked into by two prominent construction companies. The joint venture is between Six Construct and Midmac Contracting. Six Construct is a...
DOD Spending Low, Corps Look for More Work in Alaska
Nov 24, 2014  
Military construction across Alaska continues to decline. Government contractors expect to keep busy for the time being with work delegated by other federal agencies. The United States Army Corps of Engineers expects to have more than US$410 million worth of work available on at least 400 projects in the 2015 fiscal year. Chris Tew, the Alaska Contracting Division chief said that is...
China Consumer Products Fair Kicks-Off in Abu Dhabi
Nov 24, 2014  
Seeking to market products in the United Arab Emirates (UAE) and Mena regions, more than 100 consumer goods makers from China showcased their mid-to-high-end consumer goods at the China Consumer Products Fair. The second edition of the China Consumer Products Fair 2014 began on Monday in Abu Dhabi’s National Exhibition Center (Adnec). The event was officially inaugurated by the Economic...
Ford Recalls 65,000 Fusion Models Due to Issues in Ignition Key
Nov 20, 2014  
If anything defines the world of automobiles currently, it would be recalls. It seems that a flood of automobiles has surrounded the global automobiles industry, which once represented a flourishing and highly profitable industry.  The current automobile giants ordering yet another recall is Ford Motors Co. Ford declared on Tuesday that it is recalling nearly 65,000 sedans from...
3D Printed Heart Model for Better Cardiological Treatment
Nov 20, 2014  
According to research carried out by the American Heart Association’s Scientific Sessions 2014, surgeons will be able to treat complex heart disorders in patients, with the help of a three dimensional experimental printed model of the heart. For surgical planning, most cardiac surgeons make use of two dimensional images of the heart taken by MRI, ultrasound, and X-ray. But the problem is...