ResearchMoz

Smart Packaging Comes To Market: Brand Enhancement with Electronics 2013-2023

IDTechEx
Published Date » 2013-02-01
No. Of Pages » 299
   
 Electronics and electrics are already used in packaging, from winking rum bottles and talking pizza boxes to aerosols that emit electrically charged insecticide that chases the bug. We even have medication that records how much is taken and when and prompts the user. Reprogrammable phone decoration has arrived. But that is just a warm up.  
   
 The key enabling technology - printed electronics - is about to reduce costs by 99%. Consequently, many leading brand owners have recently put multidisciplinary teams onto the adoption of the new paper thin electronics on their high volume packaging. It will provide a host of consumer benefits and make competition look very tired indeed. This is mainly about modern merchandising - progressing way beyond static print - and...
Table of Content

1. EXECUTIVE SUMMARY AND CONCLUSIONS
1.1. Benchmarking validation of figures
1.2. Market sub sectors merge
1.2.1. EAS and RFID
1.3. Reasons for the slow start
1.3.1. Unbalanced supply chain
1.3.2. Many examples of e-packaging
1.3.3. Little market pull
1.3.4. Tipping point
1.3.5. P&G and printed electronics
1.3.6. Using more of the human senses and in a better way
1.3.7. Reusable electronic packaging
1.3.8. Major adoption is certain now
1.3.9. The forthcoming e-Label
1.3.10. Technology push
1.4. Market drivers
1.4.1. Two routes for e-packaging
1.4.2. Price sensitivity
1.4.3. Basic hardware platforms are essential to achieve volume
1.5. New components and creative design
1.5.1. New design paradigms
1.5.2. Electronic graphic design
1.5.3. Diageo needs
1.6. Market Background

2. INTRODUCTION
2.1. Types of packaging
2.1.1. Demographic timebomb
2.2. Why progress is now much faster
2.2.1. Using the nine human senses
2.2.2. AstraZeneca Diprivan chipless RFID
2.3. Why basic hardware platforms are essential
2.3.1. Argument for printing standard circuits
2.3.2. Touch and hearing
2.3.3. Smell
2.4. Why e-packaging has been slow to appear
2.4.1. Inadequate market research
2.4.2. Lack of market pull
2.4.3. Wrong priorities by developers - engineering led design
2.4.4. Inadequate cost reduction
2.4.5. Odd inventions not economy of scale/hardware platforms
2.4.6. Failure to solve technical problems
2.4.7. Legal constraints
2.4.8. Lessons from brand enhancement of cars using printed electronics

3. THE NEED FOR ELECTRONICS IN PACKAGING
3.1. Safety
3.2. Security and reducing crime
3.3. Uniqueness/ product differentiation
3.4. Convenience
3.5. Leveraging the brand with extra functions, brand enhancement
3.6. Merchandising and increasing sales
3.6.1. Attracting attention
3.6.2. Rewards
3.7. Entertainment
3.7.1. Touchcode
3.8. Error Prevention
3.9. Environmental aspects of disposal
3.10. Environmental quality control within the package
3.11. Quality Assurance
3.12. Consumer feedback
3.13. Removing tedious procedures
3.14. Cost reduction, efficiency and automated data collection

4. THE MAGIC THAT IS BECOMING POSSIBLE
4.1. Printed electronics products from Toppan Forms
4.2. Solar bags
4.3. Smart substrates
4.4. Transparent and invisible electronics
4.5. Tightly rollable electronics
4.5.1. Fault tolerant electronics
4.6. Stretchable and morphing electronics
4.7. Edible electronics
4.8. Electronics as art
4.9. Origami electronics
4.10. The package becomes the delivery mechanism
4.11. Electronic release, dispensing and consumer information

5. BASIC HARDWARE PLATFORMS NEEDED BY THE MARKET
5.1. Winking image label
5.2. Talking label
5.3. Recording talking label
5.4. Scrolling text label
5.5. Timer
5.6. Self adjusting use by date
5.7. Other sensing electronics
5.8. Moving color picture label
5.9. Drug and cosmetic delivery system
5.10. Ultra low cost printed RFID/EAS label

6. PRECURSORS OF IMPENDING E-PACKAGING CAPABILITIES
6.1. Coming down market
6.2. T-Ink and all the senses

7. EXAMPLES OF E-PACKAGING
7.1. Examples of e-packaging and related uses with human interface
7.1.1. Printed electronics magazine cover - Blue Spark, NTERA, CalPoly, SiCal, Canvas and Ricoh
7.1.2. Printed electronic greeting cards - Tigerprint, PragmatIC, and Novalia
7.1.3. Cigarettes scrolling display - Kent
7.1.4. Talking pill compliance kit - MeadWestvaco
7.1.5. Monochrome reprogrammable phone decoration - Hitachi
7.1.6. Color reprogrammable phone decoration - Hewlett Packard and Kent Display
7.1.7. Rum winking segments - Coyopa
7.1.8. Talking pizza boxes - National Football League and Mangia Media
7.1.9. Batteries with integral battery tester - Duracell
7.1.10. Point of Sale Material - News Corporation and T-Ink
7.1.11. Place mats - McDonalds
7.1.12. Animation and sound - Westpoint Stevens
7.1.13. Board games become animated - Hasbro and Character Visions
7.1.14. Interactive tablecloth - Hallmark
7.1.15. Compliance monitoring blisterpack - National Institutes of Health/Fisher Scientific
7.1.16. Compliance monitoring blisterpack laminate - Novartis/Compliers Group/DCM
7.1.17. Smart blisterpack dispenser - Bang & Olufsen Medicom
7.1.18. Winking sign - ACREO
7.1.19. Compliance monitoring plastic bottle - Aardex
7.1.20. Talking medicine - CVS and other US pharmacies
7.1.21. Talking prizes - Coca-Cola
7.1.22. Beer package game - VTT Technology
7.1.23. Electronic cosmetic pack - Procter and Gamble
7.1.24. Cookie heater pack - T-Ink
7.1.25. Sata Airlines - Ynvisible
7.2. Examples of e-packaging without human interface
7.2.1. Time temperature label - Findus Bioett
7.2.2. Anti-theft - Wal-Mart/Tyco ADT
7.2.3. Time temperature recorders - Healthcare shippers/KSW Microtec
7.2.4. Fly seeking spray - Reckitt Benkiser
7.2.5. RFID for tracking - Tesco & Metro/Alien Technology
7.2.6. Blisterpack with electronic feedback buttons - Kuopio University Hospital
7.2.7. Trizivir - AstraZeneca
7.2.8. Oxycontin - Purdue Pharma
7.2.9. Viagra - Pfizer
7.2.10. Theft detection - Swedish Postal Service and Deutsche Post
7.2.11. Blood - Massachusetts General Hospital
7.2.12. Real time locating systems - Jackson Healthcare Hospitals/Awarepoint

8. THE TOOLKIT OF ELECTRONIC COMPONENTS FOR E-PACKAGING
8.1. Challenges of traditional components
8.2. Printed and potentially printed electronics
8.2.1. Successes so far
8.2.2. Materials employed
8.2.3. Printing technology employed
8.2.4. Multiple film then components printed on top of each other
8.3. Paper vs plastic substrates vs direct printing onto packaging
8.3.1. Paper vs plastic substrates
8.3.2. Electronic displays that can be printed on any surface
8.4. Transistors and memory inorganic
8.4.1. Nanosilicon ink
8.4.2. Zinc oxide based ink
8.5. Transistors and memory organic
8.6. Displays
8.6.1. Electrophoretic
8.6.2. Thermochromic
8.6.3. Electrochromic
8.6.4. Printed LCD
8.6.5. OLED
8.6.6. Electrowetting
8.7. Energy harvesting for packaging
8.7.1. Photovoltaics
8.7.2. Other
8.8. Batteries
8.8.1. Single use laminar batteries
8.8.2. Rechargeable laminar batteries
8.8.3. New shapes - laminar and flexible batteries
8.9. Transparent batteries and photovoltaics - NEC, Waseda University, AIST
8.10. Other important flexible components now available
8.10.1. Capacitors and supercapacitors
8.10.2. Applications for supercapacitors
8.10.3. Resistors
8.10.4. Conductive patterns for antennas, identification, keyboards etc.
8.10.5. Programming at manufacturer, purchaser or end user
8.11. New types of component - thin and flexible
8.11.1. Memristors
8.11.2. Metamaterials
8.11.3. Thin film lasers, supercabatteries, fuel cells

9. SUPPLIER AND DEVELOPER PROFILES
9.1. ACREO, Sweden
9.2. BASF, Germany
9.3. Blue Spark Technologies, USA
9.4. Canatu, Finland
9.5. CapXX, Australia
9.6. Cymbet, USA
9.7. E-Ink
9.8. Enfucell, Finland
9.9. Excellatron, USA
9.10. Fraunhofer Institute for Electronic Nano Systems (ENAS), Germany
9.11. Front Edge Technology, USA
9.12. Holst Centre, Netherlands
9.13. Infinite Power Solutions USA
9.14. Infratab, USA
9.15. Institute of Bioengineering and Nanotechnology (A*Star), Singapore
9.16. ISORG, France
9.17. Kovio, USA
9.18. Massachusetts Institute of Technology USA
9.19. MWV, USA
9.20. NEC, Japan
9.21. New University of Lisbon, Portugal
9.22. Novalia, UK
9.23. Plastic Logic, UK
9.24. PolyIC, Germany
9.25. PragmatIC Printing, UK
9.26. Printechnologics, Germany
9.27. PST Sensor, South Africa
9.28. Solarmer, USA
9.29. Soligie, USA
9.30. Thin Film Electronics, Norway
9.31. T-Ink
9.32. VTT, Finland

10. MARKET FORECASTS 2013-2023
10.1. How printed electronics is being applied
10.2. Surprisingly poor progress with low cost electronics so far
10.3. Ultimate market potential
10.4. E-packaging market 2013-2023
10.5. Beyond brand enhancement
10.6. Printed electronics market
10.7. Battery market for small devices
10.8. Printed electronics needs new design rules
10.9. The emerging value chain is unbalanced

APPENDIX 1: GLOSSARY
APPENDIX 2: IDTECHEX PUBLICATIONS AND CONSULTANCY

List of Tables

NA

List of Figures


NA

Upcoming Reports:

UV Curable Inks Market - Global Industry Analysis, Size, Share, Growth, Trends And Forecast, 2014 - 2020
By - Transparency Market Research
Ultraviolet curing (UV curing) is a photochemical process wherein high intensity UV light is used to cure or dry inks, adhesives or coatings. UV curable inks speed up the printing process by reducing the drying time while facilitating superior bonding. UV curable inks do not employ the use of environmentally harmful solvents, additionally; they do not cause loss of coating thickness and volume loss in final prints. This causes a reduction in waste, pollutant emissions and energy use. UV curable inks are being increasingly used in printing applications as they offer higher productivity...
Silver Wound Dressings Market - Global Industry Analysis, Size, Share, Growth, Trends And Forecast, 2013 - 2019
By - Transparency Market Research
Silver has a long history of use in the world of medicine due to its antimicrobial properties. Clinicians, medical practitioners and healthcare facilities routinely use silver in a variety of forms to treat various wounds of the human body. Silver wound dressings come in several variants that includes sterile adhesive pads, films, bandages as well as combined wound dressings such as calcium alginate for increased wound healing potential and better moisture retention. Some of the types of silver wound dressings used for the treatment of various wounds are as follows: Anti –...
Poland: boring or sinking machinery market
By - Williams and Marshal Strategy
This report presents a comprehensive overview of the boring or sinking machinery market in Poland and its state as of January 2014. It provides detailed analysis of the industry, its dynamics and structure. The purpose of the report is to describe the state of the boring or sinking machinery market in Poland, to present actual and retrospective information about the volumes and dynamics of production, imports, exports and consumption, the characteristics of the market for the period 2008-2012 and to build a forecast for the market development until 2018. In the same way, the report...

Research Assistance

We will be happy to help you find what you need.
Please call us or write us:

866-997-4948 (Us-Canada Toll Free)
Tel: +1-518-618-1030
Email: sales@researchmoz.us
Select License type:

Share this report

Related News

Hitachi Readies New Suite of Driving Systems
Oct 16, 2014  
Japan’s Hitachi Automotive Systems is all set to unveil a line of innovative autonomous driving technologies as the trend of high-tech and automotive electronics takes the industry by storm. The suite of technologies were unveiled in northern Japan last week and included features such as no-hands self-parking, vehicle stability control in electric automobiles, precrash braking, and...
Canadas Agreement on Waste-Water Treatment Boosts Indias PM Pet Clean Ganga Project
Oct 16, 2014  
In 2008, Canada and India adopted a bilateral science and technology collaboration agreement for Scientific and Technological Cooperation.  The pet Clean Ganga project led by the Indian Prime Minister Narendra Modi has received a confident boost with an agreement earlier on Wednesday. The agreement is all about cleaning up the most heavily used river in the world between Canada...
China Sends Experimental Ebola Drugs to Aid Workers, to Increase Supply if Found Effective
Oct 16, 2014  
An experimental Ebola drug has been sent to Africa for use by Chinese aid worker by a Chinese drug manufacturer. The company is plans to undertake clinical trials of the drug to combat the deadly Ebola outbreak in West Africa that has claimed more than 4000 lives so far. Several thousand doses of the drug JK-05, manufactured by Sihuan Pharmaceutical Holdings Group Ltd, have been...
Broccoli Based Chemical Gives Hope For Treating Autism
Oct 15, 2014  
According to the inferences derived from a small scale clinical trial, the chemical that is extracted from the sprouts of broccoli possess certain anti-cancerous properties. Moreover, this chemical may be able to even treat behavioral symptoms in those suffering from autism spectrum disorders. This research study was carried out by the scientists of Johns Hopkins University School of Medicine...
Toyota China to Recall Crown Sedans Due to Leaking Brake Fluid Issue
Oct 15, 2014  
Joining the global wave of automobile recalls, Toyota has announced its decision to recall 93,700 cars from the Chinese market to fix an issue regarding leaking brake fluid, Chinese quality watchdog has informed.  Tianjin FAW Toyota Motor Co, the Chinese subsidiary of Toyota Motor Corp., will recall the Crown model sedans manufactured by it between 1st December 2009 and 14th June 2012....