ResearchMoz

Printed and Thin Film Transistors (TFT) and Memory 2012-2022: Forecasts, Technologies, Players

IDTechEx
Published Date » 2012-03-01
No. Of Pages » 321
   
 Printed and thin film transistor circuits will become a $3.5 billion market in 10 years, from just $2 million in 2012. They will drive lighting, displays, signage, electronic products, medical disposables, smart packaging, smart labels and much more besides. The chemical, plastics, printing, electronics and other industries are cooperating to make it happen. Already, over 500 organizations are developing printed transistors and memory, with first products being sold commercially in 2009. 
   
 The growth over the longer timescale, from 2012-2032, will be very similar to the early growth of the silicon chip market in the same interval. In other words, the twenty years from 1978 to 1998 saw a similar starting and finishing value of sales of silicon chips. History is repeating...
Table of Content

1. EXECUTIVE SUMMARY AND CONCLUSIONS

2. INTRODUCTION
2.1. Importance of printed and potentially printed electronics
2.1.1. Awesome new capability creates new markets
2.1.2. This is the new printing before it is the new electronics
2.1.3. Importance of flexibility, light weight and low cost
2.1.4. Creating radically new products
2.1.5. Improving existing products
2.2. How printed electronics is being applied
2.3. Importance of printed and thin film transistors and memory
2.3.1. Vision for the future
2.3.2. Benefits of thin film transistors and memory
2.4. Transistor basics and value chain
2.4.1. How a transistor works
2.4.2. TFTC value chain
2.5. Transistor geometry and parameters
2.5.1. Conventional geometry - horizontal transistors
2.5.2. New vertical geometry - vertical VFETs
2.5.3. New geometry - single layer transistors PragmatIC
2.5.4. On off ratio and leakage current
2.5.5. Frequency, carrier mobility and channel length
2.6. Choice of materials for these transistors
2.6.1. The thin film transistors on the back of today's LCD TV - a dead end?
2.6.2. Organic vs inorganic materials
2.7. Choice of semiconductor
2.7.2. Organic semiconductors
2.7.3. Crystalline Silicon is a dead end?
2.7.4. Compound inorganic semiconductors
2.7.5. Breakthrough in printed inorganic performance in from Kovio
2.7.6. CMOS and the n type difficulty
2.7.7. Ambipolar semiconductors
2.7.8. Carbon nanotubes as thin film semiconductors
2.7.9. Importance of the dielectric layer
2.7.10. Importance of codeposition
2.7.11. Memory basics and value chain
2.8. Substrates
2.8.1. High temperature and protective substrates vs low cost flexible
2.8.2. Polymers
2.8.3. Paper
2.9. Printing processes
2.9.1. Requirements
2.9.2. Ink jet vs fast reel to reel printing
2.9.3. Transfer printing of single crystals
2.9.4. 3D printed silicon transistors, Japan

3. ORGANIC TRANSISTORS AND MEMORY - DEVELOPMENTS
3.1. History and prospective benefits
3.2. RFID labels at Holst Centre
3.3. RFID labels from Poly IC
3.4. Lowest performance, lowest cost - ACREO
3.5. Organic dielectrics and ferroelectrics
3.6. High permittivity organic transistor gates by ionic drift
3.7. Summary

4. INORGANIC COMPOUND TRANSISTORS - DEVELOPMENTS
4.1. History and summary of potential benefits
4.2. Semiconductors
4.2.1. Zinc oxide based transistor semiconductors
4.2.2. Amorphous InGaZnO
4.2.3. Progress towards p-type metal oxide semiconductors
4.2.4. Transfer printing silicon, GaN and GaAs on film
4.2.5. Tin disulphide
4.3. Inorganic dielectrics in devices
4.3.1. Solution processed barium titanate nanocomposite
4.3.2. Hafnium oxide and HafSOx
4.3.3. Hybrid inorganic dielectrics - zirconia
4.3.4. Aluminium, lanthanum, tantalum and other oxides
4.3.5. Arizona State University's Flexible Display Center (FDC) and the University of Texas at Dallas
4.4. Chromium based technology
4.4.1. Printed oxide transistors at Oregon State University
4.5. Silicon nanoparticle ink
4.5.1. Kovio
4.6. Printing aSi reel to reel
4.7. High-Mobility Ambipolar Organic-Inorganic Hybrid Transistors
4.8. Research on molybdenmnite at EPFL Lausanne
4.9. Do organic transistors have a future?
4.10. Summary of latest work
4.10.1. Oxide Semiconductors
4.10.2. Carbon Nanotube
4.10.3. Others

5. TECHNOLOGY AND SUPPLIERS - LARGE MEMORY
5.1. Types of memory
5.2. Big difference in making small vs large memory
5.3. Strategy of various developers of thin film and printed memory
5.3.2. Thin Film Electronics TFE memory

6. TECHNOLOGY AND SUPPLIERS -CONDUCTORS
6.1. Organic vs inorganic conductors
6.2. Organic conductors
6.3. Inorganic conductors
6.3.2. Comparison of metal options
6.3.3. Polymer - metal suspensions
6.3.4. Silver solution
6.4. Progress with new conductive ink chemistries and cure processes
6.4.2. Particle-free silver inks
6.4.3. Graphene hybrid technology
6.5. Pre-Deposit Images in Metal PDIM
6.6. Carbon nanotubes
6.7. Carbon Nanotubes and printed electronics
6.8. Developers of Carbon Nanotubes for Printed Electronics

7. MARKETS 2012-2022
7.1. Market Background
7.2. Forecasts 2012-2022
7.3. Options
7.4. Split between backplane, RFID and other applications to 2022
7.5. Size of relevant markets that are impacted
7.6. Potential for non-RFID electronic labels
7.7. Potential for RFID labels 2011-2021
7.8. Market for RFID
7.8.2. Ultimate potential for highest volume RFID
7.8.3. Penetration of chipless RFID
7.9. Impact on silicon
7.10. Forecasts for materials
7.11. Backplane transistor arrays hold up AMOLED market penetration
7.12. Impediments to the commercialisation of printed transistors and memory

8. COMPARISON OF ORGANISATIONS INVOLVED IN TFTCS AND THEIR MATERIALS
8.1. Semiconductor, process, geometry, targets, challenges and objectives for 80 organisations in printed and thin film transistors and/ or memory
8.2. Profiles of 45 organisations in printed and thin film transistors and/ or memory
8.2.1. ACREO
8.2.2. AU Optoelectronics
8.2.3. BASF
8.2.4. Canon
8.2.5. CEA Liten
8.2.6. DaiNippon Printing
8.2.7. Dow Chemical
8.2.8. Ecole Superiure des Mines Saint Etienne
8.2.9. ETRI (Electronics and Telecommunications Research Institute)
8.2.10. Fraunhofer Institute for Photonic Microsystems
8.2.11. Fraunhofer Institute for Reliability and Microintegration
8.2.12. Fujitsu
8.2.13. Heraeus (formerly H.C.Starck)
8.2.14. Hewlett Packard
8.2.15. Hitachi
8.2.16. Impika
8.2.17. Industrial Technology Research Institute
8.2.18. Institute of Microelectronics
8.2.19. International University of Bremen
8.2.20. Japan Science and Technology Agency
8.2.21. Korea Electronics Technology Institute
8.2.22. Korea Institute of Science and Technology
8.2.23. Kovio
8.2.24. Kyung Hee University
8.2.25. Matsushita
8.2.26. Merck Chemicals
8.2.27. NHK
8.2.28. Oregon State University
8.2.29. Palo Alto Research Center
8.2.30. Paru
8.2.31. Plastic Logic
8.2.32. Poly IC
8.2.33. PragmatIC Printing
8.2.34. Samsung
8.2.35. Semiconductor Energy Laboratory
8.2.36. Sony
8.2.37. Sunchon National University
8.2.38. Thinfilm
8.2.39. Tohoku University
8.2.40. Tokyo Institute of Technology
8.2.41. Toppan Printing
8.2.42. University of California Los Angeles
8.2.43. University of Cambridge
8.2.44. University of Tokyo
8.2.45. Xerox

APPENDIX 1: IDTECHEX PUBLICATIONS AND CONSULTANCY

List of Tables

NA

List of Figures

NA

Upcoming Reports:

Drilling Waste Management Market - Global Industry Analysis, Size, Share, Growth, Trends And Forecast, 2013 - 2019
By - Transparency Market Research
Drilling process plays a vital role in oil exploration and production (E&P) activities. Drilling waste management technology is a significant part of successful drilling process and production operations. The suitable waste management application is crucial for successful drilling operations as well as for environmental protection. Ineffective waste management in drilling process can cause harmful chemicals and liquids to affect the environment. However, waste management in drilling process can offer streams of recyclable materials. Drilling waste management industry established after...
Polycystic Ovarian Syndrome (PCOS) Therapeutics Market - Global Industry Analysis, Size, Share, Growth, Trends And Forecast, 2013 - 2019
By - Transparency Market Research
Polycystic ovarian syndrome (PCOS) is an endocrine disorder observed in females during their reproductive age, due to which they may suffer from infertility problems. PCOS is characterized by a range of symptoms such as acne, menstrual irregularities, hirsutism, obesity, insulin resistance, anovulation and infertility. PCOS therapeutics include a wide a range of medications that are available in the worldwide. The global market for PCOS therapeutics can be segmented into six major categories, namely, anti-androgen drugs, contraceptive drugs, ovulation stimulants, cancer treatment...
Variable Frequency Drives Market - Global Industry Analysis, Size, Share, Trends, Analysis, Growth and Forecast 2014 - 2020
By - Transparency Market Research
With the increase in energy prices, companies are looking for a technology that can reduce the energy cost by providing higher level of efficiencies. Adjustable frequency drives or the variable frequency drives provide an easy method of reducing your energy cost by controlling the speed of a motor connected to the motor driven equipment. In industries, electric motor systems are responsible for the majority of power consumption and using a variable frequency drive to control the motor speed resulting lower power consumptions can prove to be beneficial for the industry. ...

Research Assistance

We will be happy to help you find what you need.
Please call us or write us:

866-997-4948 (Us-Canada Toll Free)
Tel: +1-518-618-1030
Email: sales@researchmoz.us
Select License type:

Share this report

Related News

Illinois Voicing for Funds to Promote Clean Energy Plants
Mar 26, 2015  
The advocates of renewable energy has been voicing for overhaul of the Illinois’s clean energy law for several years in a row. Refurbishing the law would entail a release of over $100 million that was collected as ratepayer charges that they can invest on payment for new solar and wind projects. However, the proponents could not help the cause and now it seems that the state is...
Michigan To Capitalize on Clean and Local Energy
Mar 26, 2015  
For years now Americans have been campaigning to promote “eat locally and shop locally” culture. Inspired from the drive, Michiganders have got on board the plan to locally harness the energy to power their lives.  It will be very interesting to see how Gov. Rick Snyder’s vision of “no-regret energy future”, which has its key focus on curbing the...
Noble Energy Pulls Out from Ruth C License Exploration
Mar 26, 2015  
Citing issues related to “regulatory uncertainty”, in the energy and gas sector of Israel, the Houston-based company named Noble Energy forwent with its permit for operation in the Ruth C exploration license, as reported by Tel Aviv Stock Exchange on Thursday.  The Ruth C license zone is located off the Haifa coast, to the east of the larger Tamar basin. Energy reserve...
Leaders Go Back to School to Motive Students to Join the Construction Industry
Mar 26, 2015  
The housing sector is facing a major shortage in UK as the region suffers from lack of skilled construction workers. Amidst this crisis, two of the industry leaders are touring schools to encourage students to be a part of the industry which so desperately needs them. According to the Construction Industry Training Board, UK needs a workforce of 180,000 or more with adequate skill sets...
Israel Freezes Construction of 1,500 New Housing Units
Mar 26, 2015  
Israel has scrapped the plan to build 1,500 new housing units in East Jerusalem. The decision comes despite Prime Minister Benjamin Netanyahu's announcement to continue construction regardless of international pressure. East Jerusalem is the neighboring region of Har Homa, a little beyond the Green Line.  From the looks of it, the construction plan in Har Homa seems to have been...