ResearchMoz

OLED Display Forecasts 2014-2024: The Rise of Plastic and Flexible Displays

IDTechEx
Published Date » 2014-07-21
No. Of Pages » 276
 OLED displays are thinner, lighter, and offer better color performances compared to backlit liquid crystal displays (LCD). OLED displays are already mass produced for mobile phones and OLED will continue gaining market share against LCD technology. 
   
 The next evolution is plastic displays and flexible displays. IDTechEx expects the first flagship phone with a flexible display to ship in 2017. Based on this scenario, the market for plastic and flexible AMOLED displays will rise to $16bn by 2020. 
   
 Glass-based displays will remain an important technology, especially in TV applications where scale-up and cost reduction are still big challenges. Flat and curved OLED TVs were recently launched by Samsung and LG. While the market for OLED TV panels will be relatively small in...
Table of Content

1. EXECUTIVE SUMMARY 

2. INTRODUCTION 
2.1. An industry transitioning from LCD manufacturing 
2.2. Why flexible displays? 
2.2.1. The need to differentiate 
2.2.2. Enabling future form factors 
2.3. Technology Roadmap: components needed for a flexible OLED display 
2.4. Technology roadmap: OLED televisions 

3. OLED STRATEGIES BY DISPLAY MANUFACTURERS 
3.1. Samsung Display (SDC) 
3.1.2. Novaled acquisition 
3.1.3. A3 plant 
3.1.4. OLED TV 
3.1.5. Tablet displays 
3.2. LG Display (LGD) 
3.3. BOE 
3.4. AU Optronics (AUO) 
3.5. Shenzhen China Star Optoelectronics Technology (CSOT) 
3.6. Visionox
3.7. Sony 
3.8. Panasonic 
3.9. Japan Display Inc (JDI) 
3.10. Sharp 
3.11. Toshiba 

4. PROGRESS IN PRINTED OLED DISPLAYS 
4.1. Printed TFT backplanes 
4.1.1. Why print TFTs? 
4.1.2. Japan leading the R&D in printed TFTs 
4.2. Growing availability of printable OLED materials 
4.2.1. Polymer OLED from Cambridge Display Technology (Sumitomo) 
4.2.2. Solution processed small molecules 
4.3. Inkjet Printed OLED 
4.3.1. Printing vs. vapour deposition 
4.3.2. Panasonic 
4.3.3. Sony 
4.3.4. BOE 
4.3.5. AU Optronics 
4.3.6. Kateeva 

5. MARKET SEGMENTATION FOR OLED DISPLAYS 
5.1. Mobile displays 
5.2. Computers: Tablets and Notebooks 
5.3. TV and monitors 
5.3.1. LGD taking the lead 
5.3.2. Competing technologies 
5.4. Wearable electronics 
5.5. Automotive and Aerospace 
5.6. Industrial and professional displays 
5.7. Microdisplays 
5.8. Others 

6. MARKET FORECAST 
6.1. Definition of OLED display technologies 
6.1.1. AMOLED rigid glass 
6.1.2. AMOLED rigid plastic 
6.1.3. AMOLED flexible 
6.1.4. PMOLED 
6.1.5. Segmented 
6.1.6. Microdisplays 
6.2. Revenue forecast by market segment 
6.3. Shipment forecast by market segment 
6.4. Revenue forecast by technology 
6.5. Shipment forecast by technology 
6.6. Details by market segment 
6.6.1. Mobile phones 
6.6.2. Tablets/Notebooks 
6.6.3. TV and monitors 
6.6.4. Wearable devices 
6.6.5. Automotive and aerospace 
6.6.6. Industrial/Professional displays 
6.6.7. Microdisplays 
6.6.8. Others 
6.7. Additional figures 
6.7.1. Compound annual growth rate 
6.7.2. Market share for each segment 
6.7.3. Revenue forecast for Plastic and Flexible OLED displays 

7. FLEXIBLE SUBSTRATES 
7.1. Requirements 
7.1.1. Key challenges of flexible substrates 
7.1.2. Process temperature by substrate type 
7.2. Benchmarking by material type 
7.3. Company profiles 
7.3.1. DuPont Teijin Films 
7.3.2. ITRI 
7.3.3. Samsung Ube Materials 
7.3.4. Kolon Industries 
7.3.5. Corning 
7.3.6. AGC Asahi Glass 

8. BACKPLANE TECHNOLOGY 
8.1. Pixel circuit in Active Matrix backplanes 
8.1.1. OLED displays are current driven 
8.1.2. Amorphyx: replacing TFT with diodes 
8.2. Semiconductor materials 
8.2.1. Benchmarking of the main technologies 
8.2.2. Organic TFT 
8.2.3. Metal oxide TFT 
8.3. Passive matrix OLED (PMOLED) 
8.4. Company profiles 
8.4.1. Plastic Logic 
8.4.2. CBrite
8.4.3. Arizona State University 
8.4.4. SmartKem 
8.4.5. Polyera 
8.4.6. Flexink 
8.4.7. Merck (EMD Chemicals) 
8.4.8. BASF 

9. FRONTPLANE: OLED LAYERS 
9.1. Role of each layer 
9.1. Suppliers in China 
9.1.1. Beijing Aglaia Technology Development Co 
9.1.2. Borun New Material Technology Co. (Borun Chemical Co) 
9.1.3. Jilin Optical & Electronic Materials Co 
9.1.4. Visionox 
9.1.5. Xi'an Ruilian Modern Electronic Chemicals Co., Ltd 
9.2. Suppliers in Europe 
9.2.1. Heraeus 
9.2.2. Merck 
9.2.3. Novaled 
9.2.4. Cynora 
9.2. Shadow mask vs. White OLED 
9.2.1. Fine metal mask (FMM) 
9.2.2. Yellow emitter with color filters 
9.2.3. White OLED approach 
9.3. Subpixel layouts 
9.3. Suppliers in Japan 
9.3.1. Hodogaya 
9.3.2. Idemitsu Kosan 
9.3.3. JNC (ex Chisso) 
9.3.4. Konica Minolta 
9.3.5. Mitsubishi Chemical Corporation 
9.3.6. Mitsui Chemicals 
9.3.7. Nippon Steel & Sumikin Chemical 
9.3.8. Nissan Chemical Industries 
9.3.9. Sumitomo Chemical 
9.3.10. Toray Industries 
9.4. Suppliers in Korea 
9.4.1. Cheil Industries 
9.4.2. Daejoo Electronic Materials Company 
9.4.3. Doosan Corporation ElectroMaterials 
9.4.4. Dow Chemical 
9.4.5. Duksan Hi-Metal 
9.4.6. LG Chem 
9.4.7. Sun Fine Chemical Co (SFC) 
9.4. Table of suppliers 
9.5. Suppliers in Taiwan 
9.5.1. E-Ray Optoelectronics 
9.5.2. Luminescence Technology Co. 
9.5.3. Nichem Fine Technology 
9.6. Suppliers in USA 
9.6.1. DuPont 
9.6.2. Plextronics (Solvay) 
9.6.3. Universal Display Corporation 

10. ITO REPLACEMENT: TRANSPARENT CONDUCTORS 
10.1. Developed for touch, used in displays 
10.1. Company profiles 
10.1.1. Blue Nano 
10.1.2. Cambrios 
10.1.3. CNano 
10.1.4. Canatu 
10.1.5. NanoIntegris 
10.1.6. Heraeus 
10.1.7. Agfa 
10.2. A range of technologies available 
10.3. Table of suppliers 

11. BARRIER FILM TECHNOLOGY 
11.1. Why encapsulation is needed 
11.1.1. Organic semiconductors are sensitive to air and moisture 
11.1.2. Requirements for barrier films 
11.1.3. Different ways barriers are implemented 
11.1.4. Dyad concept
11.2. Different barrier technologies available 
11.2.1. Pros and cons of each approach 
11.2.2. List of technology suppliers 
11.3. Vitex Technology (Samsung) 
11.4. Flexible glass 
11.5. Atomic Layer Deposition (ALD) 
11.5.1. Beneq 
11.5.2. Encapsulix 

List of Tables

2.1. Technology roadmap for flexible OLED displays 
2.2. Technology roadmap for OLED televisions 
3.1. LGD flexible OLED panel 
3.2. Display production in mainland China 
5.1. Mobile phone brands with Samsung Display OLED panels 
6.1. OLED display market size by segments ($ million) 
6.2. OLED display market size by segments (M unit) 
6.3. OLED display market by display type ($ million) 
6.4. OLED display market by display type (M unit) 
8.1. Comparison of OTFT against other technologies 
8.2. Various flexible display demonstrators made with OTFT 
8.3. Current status of IGZO v.s a-Si and LTPS 
8.4. Various flexible display demonstrators made with oxide TFT 
9.1. Suppliers of OLED materials 
9.2. Material sales 
10.1. Table of suppliers 
11.1. Water vapor and oxygen transmission rates of various materials 
11.2. Requirements of barrier materials 
11.3. Dyads or inorganic layers on polymer substrates: main performance metrics for some of the most important developers 

List of Figures


2.1. Display value chain 
2.2. Difference between OLED and LCD 
2.3. Evolution of TFT-LCD glass substrate size 
2.4. Glass substrate sizes by generation 
2.5. Sizes from Gen 1 to Gen 10 
2.6. Multiple displays per glass sheet 
2.7. Example of increasing TV sizes 
2.8. Selling points of flexible displays 
2.9. Flexible displays will fill the gap which arises from the demand for more portable devices but larger screen sizes 
2.10. Possible evolution of form factors for mobile phones 
2.11. Possible evolution of form factors for tablets 
2.12. Basic stack structure of AMLCD and AMOLED 
2.13. Roadmap towards flexible AMOLED displays and flexible electronics devices 
3.1. Samsung AMOLED production 
3.2. Expected revenue growth for Samsung Display 
3.3. Choice of TFT technology for LCD and OLED 
3.4. Samsung's introduction to Youm 
3.5. Samsung's involvement in the key technologies for flexible OLED 
3.6. Samsung CapEx plan 
3.7. 55" and 77" curved OLED TV by LG 
3.8. WRGB OLED structure from LG
3.9. Plastic OLED display at SID 2013 
3.10. Face sealing encapsulation 
3.11. Laser assisted release 
3.12. Flexible display roadmap by LG Display 
3.13. AMOLED development from 2011 to 2013 
3.14. AMOLED technology for TV application 
3.15. BOE backplane technology development 
3.16. Flexible display rolled at 20mm curvature radius 
3.17. Structure of the flexible OLED display 
3.18. AUO OLED history 
3.19. Flexible 4.3" display demonstrated in 2010 
3.20. Flexible 5" AMOLED display presented at SID2014 
3.21. Shenzhen CSOT AMOLED roadmap 
3.22. Flexible PMOLED backplane 
3.23. Structure of the flexible PMOLED panel 
3.24. Visionox AMOLED project 
3.25. 3.5 inch LTPS flexible full-color AMOLED 
3.26. Super Top Emission 
3.27. Rollable 4.1" display presented in 2010 
3.28. Panasonic 4K 56" OLED TV at CES 2013 
3.29. Structure of a 4" OLED displays made on a PEN substrate
3.30. JDI strategy 
3.31. Sharp's TFT technologies 
3.32. Flexible display with IGZO backplane presented at SID 2013 
3.33. Flexible 3.4" QHD OLED display by Sharp 
3.34. Sharp and Pixtronic MEMS 
3.35. Comparison between IGZO with a-Si and poly-Si 
3.36. Flexible AMOLED panel fabrication 
3.37. Photograph of the 10.2" flexible OLED display 
4.1. Traditional v.s. printing methods 
4.2. Many printable semiconductor materials
4.3. Device structure 
4.4. Electrical properties of the printed TFTs 
4.5. Fully printed, organic, thin-film transistor array 
4.6. Organic TFT based on ambient conductive metal nanoparticles 
4.7. Formation of organic semiconductor layer 
4.8. Transfer characteristics of printed OTFT
4.9. Screen printed array 
4.10. Device structure with floating gate 
4.11. Offset based printing method 
4.12. Devices demonstrated by Toppan Printing 
4.13. Electrophoretic display with printed TFT array 
4.14. Electrophoretic display made with a printed TFT backplane at 200 ppi 
4.15. Inkjet printing process 
4.16. Photograph of the printed oxide TFTs on glass substrate 
4.17. PLED performance data 
4.18. Lifetime and efficiency 
4.19. Printing process 
4.20. UDC printable OLED materials 
4.21. Printing seen as an area of future growth (presented in June 2014) 
4.22. Characteristics of OLED production technologies
4.23. Development of OLED printing 
4.24. Comparison of OLED printing versus OLED vapor deposition 
4.25. Panasonic 4K 56" OLED TV at CES 2013 
4.26. Sony 3" printed OLED demonstrator at SID 2011 
4.27. Printing process in 3 steps 
4.28. Structure of the hybrid printed OLED structure 
4.29. Pixel structure of the 17" printed OLED display 
4.30. Development of EL technology 1 
4.31. Development of EL technology 2 
4.32. Device structure 
4.33. Picture of the 65" printed TV 
4.34. Inkjet printing equipment designed for OLED display production 
4.35. Kateeva YIELDjet 
4.36. Improving the T95 lifetime 
5.1. S-Stripe pixel layout on the Motorola Moto X (left) and the Samsung Galaxy Note 2 (right) 
5.2. Samsung Galaxy Round and LG G Flex 
5.3. Concept of foldable phone display 
5.4. Concept of a rollable phone display 
5.5. Samsung Galaxy Tab S 
5.6. The world's first OLED tablet computer 
5.7. 55" and 77" curved OLED TV by LG 
5.8. Comparison with a conventional TV 
5.9. 55-in Crystal LED prototype 
5.10. Gear Fit smartwatch with 1.84" Curved Super AMOLED (432x128) 
5.11. Gear Fit curved display 
5.12. 1.3" PMOLED in a smartwatch 
5.13. LG Lifeband Touch with monochrome display 
5.14. Futaba PMOLED 
5.15. OLED watch display 
5.16. Flexible display prototype driven by OTFT 
5.17. PMOLED display used in Chrysler's Grand Cherokee 
5.18. PMOLED display used in GM's Chevrolet Corvette 
5.19. OLED display in the Lexus RX can display graphics and text 
5.20. Automotive displays from Futaba 
5.21. Digital rear-view mirror on the Audi R18 race car 
5.22. BMW M6 OLED display 
5.23. BMW M Performance Alcantara steering wheel with built-in PMOLED display 
5.24. AMOLED in automotive 
5.25. Sony 25" professional monitor 
5.26. eMagin's microdisplays 
5.27. Samsung NX30 with a 3" AMOLED display 
5.28. Microsoft Zune HD with 3.3" display 
5.29. The original Sony PSP Vita with a 5" OLED display 
5.30. Game controller with a small display 
6.1. OLED display market size by segments ($ million) 
6.2. OLED display market size by segments (M unit) 
6.3. OLED display market by display type ($ million) 
6.4. OLED display market by display type (M unit) 
6.5. Mobile phones ($ million) 
6.6. Mobile phones (M units) 
6.7. Tablet/Notebook displays ($ million) 
6.8. Tablet/Notebook displays (M units) 
6.9. TV and monitors ($ million) 
6.10. TV and monitors (M units) 
6.11. Wearable devices ($ million) 
6.12. Wearable devices (M units) 
6.13. Automotive and aerospace ($ million) 
6.14. Automotive and aerospace (M units) 
6.15. Industrial/Professional displays ($ million) 
6.16. Industrial/Professional displays (M units) 
6.17. Microdisplays ($ millions) 
6.18. Microdisplays (M units) 
6.19. Others ($ million) 
6.20. Others (M units) 
6.21. CAGR by market segment 
6.22. OLED market share for each segment as percentage of total market size 
6.23. Revenue forecast for plastic and flexible OLED displays 
7.1. Glass transition temperature (Tg) for various plastic substrates 
7.2. Upper operating temperature 
7.3. Heat stabilised PET and PEN 
7.4. Benchmarking based on 8 parameters 
7.5. FlexUP process for display backplane using a non-sticking debonding layer 
7.6. Key technologies for Samsung's flexible AMOLED displays 
8.1. Typical active matrix circuit for LCD, using one TFT and one storage capacitor per pixel 
8.2. (A) Example of a basic 2T1C circuit. (B) 4T1C circuit implementing voltage compensation 
8.3. Benchmarking of the semiconductor materials
8.4. Improvement in carrier mobility of organic semiconductors over the last 30 years 
8.5. Organic materials can be rolled over a small radius 
8.6. Comparison between metal oxide and organic TFTs 
8.7. Foldable display by SEL and Nokia 
8.8. Tri-Fold Flexible AMOLED 
8.9. Historical annual sales from various suppliers of AMOLED and PMOLED 
8.10. Curved PMOLED display 
8.11. Film OLED product launch plan 
8.12. Glass-free OLED film 
8.13. Flexible PMOLED backplane 
8.14. Structure of the flexible PMOLED panel 
9.1. Typical OLED material stack in bottom emission OLED
9.2. Function of each layer 
9.3. Various configurations for OLED materials 
9.4. Distinction between bottom-emission and top-emission OLED 
9.5. Vapour deposition using fine mesh mesh 
9.6. Alternatives to FMM 
9.7. Two-mask display architecture 
9.8. Simulation results for the two-mask display architecture 
9.9. WOLED was initially developed by Kodak 
9.10. Principles of tandem white OLED 
9.11. White OLED architecture used in microdisplays 
9.12. iPhone 5 (LCD), traditional RGB stripe 
9.13. Galaxy S3, Pentile S-stripe layout 
9.14. Galaxy S4, Diamond layout 
9.15. Galaxy S5 (diamond layout): 
9.16. Hodogaya business structure 
9.17. R&D activity of Idemitsu 
9.18. OLED material production plant, Paju 
9.19. Current performance of Konica Minolta 
9.20. Proprietary blue phosphorescent emitter 
9.21. Priority initiatives by sector 
9.22. Cheil Industries growth strategy 
9.23. Cheil's OLED materials sales 
9.24. Color performance from SFC 
9.25. Facilities in Korea 
9.26. UDC presentation slides 
9.27. UDC historical revenues 
10.1. Benchmarking different TCF and TCG technologies 
11.1. OLED and OPV have the most demanding requirements 
11.2. Schematic diagrams for encapsulated structures a) conventional b) laminated c) deposited in situ 
11.3. Scanning electron micrograph image of a barrier film cross section 
11.4. Design compromise for flexible barriers 
11.5. Lab WVTR achieved (in g/sq.m./day)in research for each of the companies involved in the development of flexible encapsulation solutions 
11.6. Surge in patent publications 
11.7. Examples of polymer multi-layer (PML) surface planarization a) OLED cathode separator structure b) high aspect ratio test structure 
11.8. Vitex multilayer deposition process 
11.9. SEM cross section of Vitex Barix material with four dyads
11.10. Optical transmission of Vitex Barix coating 
11.11. Edge seal barrier formation by deposition through shadow masks 
11.12. Three dimensional barrier structure. Polymer is shown in red, and oxide (barrier) shown in blue 
11.13. Schematic of flexible OLED with hybrid encapsulation 
11.14. Corning's Flexible glass with protective tabbing on the edges

Upcoming Reports:

Neonatal Equipments Market - Global Industry Size, Market Share, Trends, Analysis, And Forecasts 2012 - 2018
By - Transparency Market Research
Neonatal deaths are accounting for more than 40% of the total child deaths across the world. Pre-mature birth complications and high incidences of asphyxia are the major causes of neonatal deaths. Growing awareness, low cost equipment, and replacement market are some of the factors driving the growth of neonatal equipments industry.  Global neonatal equipment market is witnessing significant growth rate for the past few years as a result of improved healthcare facilities, technological innovations in medical devices, and continuous monitoring of trained healthcare...
Nylon 66 Market - Global Industry Analysis, Size, Share, Growth, Trends And Forecast, 2013 - 2019
By - Transparency Market Research
Nylon 66 is a derivative of nylon synthesized by polycondensation of hexamethyelenediamine and adipic acid. It has superior mechanical properties and high heat resistance as compared to nylon 6. Nylon 66 can be reinforced with fillers, impact modifiers, fibers and internal lubricants to improve its physical properties such as strength, stiffness, ductility, friction properties and wear resistance. Nylon 66 is used for electro-insulating material, various machine parts, ball bearing cages, pipes, airbags, tires, ropes, conveyor belts, carpets fibers and apparel. End user industries of nylon...
Hemophilia Therapeutics Market - Global Industry Analysis, Size, Share, Growth, Trends And Forecast, 2013 - 2019
By - Transparency Market Research
Hemophilia is a genetic disorder where the body fails to coagulate blood when blood vessel is ruptured. Between itsvariants, hemophilia A is more common than hemophilia B. A very rare form of hemophilia namely acquired hemophilia results from abnormalities in immune system of an individual. Acquired hemophilia is not a genetic disorder. Common symptoms of hemophilia are internal and external bleeding episodes.   Based on the treatment of hemophilia, global hemophilia therapeutics market is segmented as follows: Hemophilia A Hemophilia B The global...

Research Assistance

We will be happy to help you find what you need.
Please call us or write us:

866-997-4948 (Us-Canada Toll Free)
Tel: +1-518-618-1030
Email: sales@researchmoz.us
Select License type:

Share this report

Related News

Effective Liver Fat Detection Via Magnetic Resonance
Sep 18, 2014  
The issue of excess body weight has several adverse effects. Fat accumulation affects the internal organs as well, one of them being the liver. Hepatic Steatosis is a condition that causes fibrosis, cirrhosis, and inflammation due to fat deposits in the liver. Hitherto, hepatic biopsy has been the most popular technique for diagnosing hepatic fat. It is way more precise in determining the fat...
Philips App-enabled Devices for Pain Relief
Sep 18, 2014  
PulseRelief and Blue Touch are the two latest pain relief devices developed by Philips. These devices consist of app-enabled tools which are managed by iPads or iPhones.  These days a lot of importance is being given to pain management and not just exploring drug options for pain relief. Many suffer from chronic pain that after a point of time begins to affect their lifestyles,...
Effects of Refinery Project on Barrel Prices
Sep 18, 2014  
According to the electronic newsletter issued by the California Independent Petroleum Association on Monday, the refinery project poses major economic questions regarding bringing extra crude barrels into the California market. This will affect the local crude prices in the state.  The oil-by-rail project of Alon USA Energy Inc. on Rosedale Highway stirs several questions...
AWU to Bid Renewable Energy Target Reforms
Sep 17, 2014  
The Australian Workers Union has asked for exemptions for the aluminum industry from the Renewable Energy Target. This is speculated to place increased pressure on Labor to draw up a bipartisan deal with the Coalition regarding amendments to the scheme. Scott McDine, the national secretary for AWU has stated the Renewable Energy Target, if it progresses in its current state, would...
James White Drinks Introduces New Look in its Apple Juice Range
Sep 17, 2014  
James White Drinks – premium fruit and vegetable juice maker has introduced a new and fresh look to its Classics English Apple Juice range. The brand has launched the range in time for the Christmas market season which is due in a few months.  Sourced from the English orchards featuring a richly-fine taste as perfect as a non-alcoholic alternative to wine products, this has...