ResearchMoz

Most-Needed Chemicals for New Disruptive Electronics and Electrics: De-risk your Investment

IDTechEx
Published Date » 2013-04-17
No. Of Pages » 205
   
The chemistry of the new electronics and electrics is key to its future, whether it is invisible, tightly rollable, biodegradable, edible, employing the memristor logic of the human brain or possessing any other previously- impossible capability in a manufactured device. De-risking that material development is vital yet the information on which to base that has been unavailable. No more.   See how the metals aluminium, copper and silver are widely deployed, sometimes in mildly alloyed, nano, precursor, ink or other form. Understand the 12 basic compounds most widely used in the new electronics and electrics and compare them with compounds exhibiting the broadest range of appropriate electrical and optical functions for the future. Those seeking low volume, premium priced...
TABLE OF CONTENT

1. EXECUTIVE SUMMARY AND CONCLUSIONS
1.1. The most important materials by three criteria
1.2. Chemical giants reposition to benefit
1.2.1. Itochu and partners
1.2.2. BASF and partners
1.2.3. Dow and others
1.3. Need for de-risking
1.4. The most widely useful compounds
1.4.1. Many examples analysed
1.4.2. Possible future importance of the chemistry of iron
1.5. The most versatile compounds electronically
1.6. Disruptive new electronics and electrics - the market pull
1.7. Fine metals and semiconductors that will be most widely used - survey result
1.8. Fine inorganic compounds most widely needed - survey results
1.9. The inorganic compounds - detailed results for 37 families of device
1.10. Allotropes of carbon most widely needed - survey result
1.11. Fine organic compounds most widely needed - survey results
1.12. Survey results for lithium salts in the biggest battery market
1.13. Less prevalent or less established formulations

2. INTRODUCTION
2.1. Elements being targeted
2.2. Here come composites and mixtures
2.3. Disparate value propositions
2.4. Here comes printing
2.5. Great breadth
2.6. Fragile chemicals
2.7. Challenges of ink formulation
2.8. Company size is not a problem
2.9. Uncertainties
2.10. Inorganic vs organic
2.11. Impediments
2.12. Photovoltaics
2.13. Examples of company activity
2.13.1. Dow Chemical
2.13.2. Merck, DuPont and Honeywell
2.13.3. Bayer
2.14. Progress with Semiconductors
2.15. Printed and multilayer electronics and electrics needs new design rules
2.16. Metamaterials, nantennas and memristors
2.17. The toolkit becomes large
2.17.1. Three dimensional
2.17.2. Leveraging smart substrates
2.17.3. Planned applications can have plenty of area
2.17.4. Health and environment to the fore
2.17.5. Three generations?

3. THE MOST IMPORTANT EMERGING DEVICES AND THEIR REQUIREMENTS
3.1. Conductive patterning: antennas, electrodes, interconnects, metamaterials
3.1.1. Silver flake inks continue to reign supreme for printing
3.1.2. Alternatives gain share
3.1.3. ITO Replacement
3.1.4. For RFID Tags
3.1.5. For logic and memory
3.1.6. For sensors
3.1.7. For smart packaging
3.1.8. For memristors
3.2. CIGS Photovoltaics
3.2.1. Brief description of technology
3.3. DSSC Photovoltaics
3.3.1. Brief description of technology
3.4. Electrophoretic displays and alternatives
3.4.1. Brief description of the technology
3.4.2. Applications of E-paper displays
3.4.3. E ink
3.4.4. The Killer Application
3.4.5. SiPix, Taiwan
3.4.6. Alternatives - electrowetting
3.5. Inorganic LED
3.6. Li-ion battery rechargeable
3.7. Rechargeable lithium/lithium metal battery and PEM fuel cell
3.8. MEMS & NEMS
3.9. Organic Light Emitting Diode OLED displays and lighting
3.10. Power semiconductors
3.11. Supercapacitor
3.11.1. View of rollout of graphene based devices
3.12. Supercabattery
3.13. Touch screen
3.13.1. Main Touch Technologies
3.13.2. Leading Market Applications
3.13.3. ITO Alternatives for touch screens
3.13.4. Over 100 profiled organizations
3.14. Transistor, diode, thermistor, thyristor for electronics
3.15. Other devices of interest

4. CARBON NANOTUBES AND GRAPHENE
4.1. Carbon Nanotubes
4.2. Graphene
4.3. Carbon Nanotubes and graphene summary
4.4. 113 Organizations profiled

5. INDIUM COMPOUNDS IN THE NEW ELECTRONICS AND ELECTRICS
5.1. More than the story of ITO
5.2. Key in the newer light emitting devices
5.3. Quantum dots and FETs
5.4. Cost and printability are challenges

6. TITANIUM COMPOUNDS IN THE NEW ELECTRONICS AND ELECTRICS
6.1. Piezoelectrics, energy harvesters, supercapacitors, displays and sensors
6.2. Allied topic photocatalysis

7. ZINC COMPOUNDS FOR THE NEW ELECTRONICS AND ELECTRICS
7.1. Dielectric for insulation, capacitors and other devices
7.2. Improving the efficiency of UV LED

8. FLUORINE COMPOUNDS FOR THE NEW ELECTRONICS AND ELECTRICS
8.1.Rechargeable lithium, alkali metal fluorides and other fluorine chemistry

List of Tables


1.1.Description and images of the 37 families of new electronics and electrics
1.2.The 20 categories of chemical and physical property exploited by the key materials in the devices are identified
1.3.Four families of carbon allotrope needed in the new electronics and electrics
1.4.Organic materials used and researched for the 37 families of new electronics and electrics
1.5.138 manufacturers and putative manufacturers of lithium-based rechargeable batteries showing country, cathode and anode chemistry, electrolyte form, case, targeted applicational sectors and sales relationships and successes by veh
1.6.Examples of relatively less prevalent or less established formulations than those examined earlier
2.1.Examples of inorganic materials needed for printed electronics and their suppliers.
2.2.Comparison of the more challenging inorganic and organic materials used in printed and potentially printed electronics
2.3.Typical quantum dot materials from Evident Technologies and their likely application.
2.4.The leading photovoltaic technologies compared
3.1.Key chemicals and materials for conductive patterning: antennas, electrodes, interconnects, metamaterials
3.2.Product Overview of conductive printed electronics
3.3.Advantages and disadvantages of electrophoretic displays
3.4.Comparison between OLEDs and E-Ink of various parameters
3.5.138 manufacturers and putative manufacturers of lithium-based rechargeable batteries showing country, cathode and anode chemistry, electrolyte form, case, targeted applicational sectors and sales relationships and successes by veh
3.6.Some materials needs for small molecule vs polymeric OLEDs.
3.7.Organisations working in touch screens
3.8.The 20 categories of chemical and physical property exploited by the key materials in the devices are identified
3.9.Four families of carbon allotrope needed in the new electronics and electrics
3.10.Organic materials used and researched for the 37 families of new electronics and electrics
4.1.Semiconductors
4.2.Activities of 113 Organizations

List of Figures


1.1.Inorganic elements and compounds most widely needed for growth markets in the new electronics and electrics over the coming decade
1.2.Number of new device families using elemental or mildly alloyed aluminium, copper, gold, silicon and silver giving % of 37 device families analysed and typical functional form over the coming decade
1.3.The anions or metals in the most popular inorganic compounds in the new electronics by number of device families using them and percentage of the 37 device families (there is overlap for multi-metal formulations). Main functional
1.4.The incidence of the allotropes of carbon that are most widely being used, at least experimentally, for the 37 types of new electronics and electrics giving functional form and % and number of surveyed devices involved
1.5.The families of organic compound that are most widely being used or investigated for the new electronics as % of sample and number of device families using them
2.1.Some of the most promising elements employed in research and production of the new electronics and electrics - much broader than today and away from silicon
2.2.The increasing potential of progress towards the printing and multilayering of electric and electronic devices
2.3.Attributes and problems of inorganic, hybrid and organic thin film electronics form a spectrum
2.4.Likely impact of inorganic printed and potentially printed technology to 2020 - dominant technology by device and element. Dark green shows where inorganic technology is extremely important for the active (non-linear) components s
2.5.Mass production of flexible thin film electronic devices using the three generations of technology
2.6.Strategy options for chemical companies seeking a major share of the printed electronics market, with examples.
2.7.Metal interconnect and antennas on a BlueSpark printed manganese dioxide zinc battery supporting integral antenna and interconnects
3.1.Negative refractive index metamaterial bends electromagnetic radiation the "wrong" way
3.2.Split ring resonator and micro-wire array that form negative refractive index material when printed together in the correct dimensions
3.3.Schematic representation of a CIGS thin film solar cell
3.4.Principle of operation of electrophoretic displays
3.5.E-paper displays on a magazine sold in the US in October 2008
3.6.Retail Shelf Edge Labels from UPM
3.7.Secondary display on a cell phone
3.8.Amazon Kindle 2, launched in the US in February 2009
3.9.Electrophoretic display on a commercially sold financial card
3.10.Flow chart of the manufacture process
3.11.Process for printing LEDs
3.12.OLED structure showing left the vacuum -based technology
3.13.Examples of OLED light-emitting and hole transport molecules
3.14.Functions within a small molecule OLED, typically made by vacuum processing
3.15.Illustration of how the active matrix OLED AMOLED is much simpler than the AMLCD it replaces.
3.16.Families of power semiconductor
3.17.Latest power semiconductors by frequency of use
3.18.View of the rollout of graphene in advanced electrical and electronic components
3.19.Touch market forecast by technology in 2012
3.20.Conductance in ohms per square for the different printable conductive materials, at typical thicknesses used, compared with bulk metal, where nanotubes refers to carb on nanotube or graphene
4.1.Structure of single-wall carbon nanotubes
4.2.The chiral vector is represented by a pair of indices (n, m). T denotes the tube axis, and a1 and a2 are the unit vectors of graphene in real space
4.3.Targeted applications for carbon nanotubes by Eikos
5.1.Zinc oxide nanowires
5.2.SEM image of the vertically-aligned Ga-doped ZnO nanofiber

Upcoming Reports:

Greece: market of machinery and apparatus for filtering or purifying water
By - Williams and Marshal Strategy
This report presents a comprehensive overview of the machinery and apparatus for filtering or purifying water market in Greece and its state as of January 2014. It provides detailed analysis of the industry, its dynamics and structure. The purpose of the report is to describe the state of the machinery and apparatus for filtering or purifying water market in Greece, to present actual and retrospective information about the volumes and dynamics of production, imports, exports and consumption, the characteristics of the market for the period 2008-2012 and to build a forecast for the market...
Greece: cotton yarn market
By - Williams and Marshal Strategy
This report presents a comprehensive overview of the cotton yarn market in Greece and its state as of January 2014. It provides detailed analysis of the industry, its dynamics and structure. The purpose of the report is to describe the state of the cotton yarn market in Greece, to present actual and retrospective information about the volumes and dynamics of production, imports, exports and consumption, the characteristics of the market for the period 2008-2012 and to build a forecast for the market development until 2018. In the same way, the report presents an elaborate overview of the...
Microwave Packaging Market - Global Industry Size, Market Share, Trends, Analysis, And Forecasts, 2012 - 2018
By - Transparency Market Research
The microwave packaging market is expected to witness stupendous growth fueled by consumer demand for foods offering ease of preparation and portability for on-the-go eating. Other important factors driving the microwave packaging market are improvements in packaging structure that allow food to be heated in the package itself and served instantly and innovations that overcome limitations of microwave ovens like browning and crisping.  Freshly prepared food application segment is expected to witness the highest gains depending on its convenience and perception of higher...

Research Assistance

We will be happy to help you find what you need.
Please call us or write us:

866-997-4948 (Us-Canada Toll Free)
Tel: +1-518-618-1030
Email: sales@researchmoz.us
Select License type:

Share this report

Related News

World Cup Stadium at Qatar to be Renovated for 2022 FIFA World Cup
Nov 26, 2014  
The design for renovation of the Khalifa International Stadium will soon be unveiled by the organization that is responsible for building the infrastructure and stadiums for the 2022 FIFA World Cup Qatar. The main construction work on the stadium is being looked into by two prominent construction companies. The joint venture is between Six Construct and Midmac Contracting. Six Construct is a...
DOD Spending Low, Corps Look for More Work in Alaska
Nov 24, 2014  
Military construction across Alaska continues to decline. Government contractors expect to keep busy for the time being with work delegated by other federal agencies. The United States Army Corps of Engineers expects to have more than US$410 million worth of work available on at least 400 projects in the 2015 fiscal year. Chris Tew, the Alaska Contracting Division chief said that is...
China Consumer Products Fair Kicks-Off in Abu Dhabi
Nov 24, 2014  
Seeking to market products in the United Arab Emirates (UAE) and Mena regions, more than 100 consumer goods makers from China showcased their mid-to-high-end consumer goods at the China Consumer Products Fair. The second edition of the China Consumer Products Fair 2014 began on Monday in Abu Dhabi’s National Exhibition Center (Adnec). The event was officially inaugurated by the Economic...
Ford Recalls 65,000 Fusion Models Due to Issues in Ignition Key
Nov 20, 2014  
If anything defines the world of automobiles currently, it would be recalls. It seems that a flood of automobiles has surrounded the global automobiles industry, which once represented a flourishing and highly profitable industry.  The current automobile giants ordering yet another recall is Ford Motors Co. Ford declared on Tuesday that it is recalling nearly 65,000 sedans from...
3D Printed Heart Model for Better Cardiological Treatment
Nov 20, 2014  
According to research carried out by the American Heart Association’s Scientific Sessions 2014, surgeons will be able to treat complex heart disorders in patients, with the help of a three dimensional experimental printed model of the heart. For surgical planning, most cardiac surgeons make use of two dimensional images of the heart taken by MRI, ultrasound, and X-ray. But the problem is...