ResearchMoz

Most-Needed Chemicals for New Disruptive Electronics and Electrics: De-risk your Investment

IDTechEx
Published Date » 2013-04-17
No. Of Pages » 205
   
The chemistry of the new electronics and electrics is key to its future, whether it is invisible, tightly rollable, biodegradable, edible, employing the memristor logic of the human brain or possessing any other previously- impossible capability in a manufactured device. De-risking that material development is vital yet the information on which to base that has been unavailable. No more.   See how the metals aluminium, copper and silver are widely deployed, sometimes in mildly alloyed, nano, precursor, ink or other form. Understand the 12 basic compounds most widely used in the new electronics and electrics and compare them with compounds exhibiting the broadest range of appropriate electrical and optical functions for the future. Those seeking low volume, premium priced...
TABLE OF CONTENT

1. EXECUTIVE SUMMARY AND CONCLUSIONS
1.1. The most important materials by three criteria
1.2. Chemical giants reposition to benefit
1.2.1. Itochu and partners
1.2.2. BASF and partners
1.2.3. Dow and others
1.3. Need for de-risking
1.4. The most widely useful compounds
1.4.1. Many examples analysed
1.4.2. Possible future importance of the chemistry of iron
1.5. The most versatile compounds electronically
1.6. Disruptive new electronics and electrics - the market pull
1.7. Fine metals and semiconductors that will be most widely used - survey result
1.8. Fine inorganic compounds most widely needed - survey results
1.9. The inorganic compounds - detailed results for 37 families of device
1.10. Allotropes of carbon most widely needed - survey result
1.11. Fine organic compounds most widely needed - survey results
1.12. Survey results for lithium salts in the biggest battery market
1.13. Less prevalent or less established formulations

2. INTRODUCTION
2.1. Elements being targeted
2.2. Here come composites and mixtures
2.3. Disparate value propositions
2.4. Here comes printing
2.5. Great breadth
2.6. Fragile chemicals
2.7. Challenges of ink formulation
2.8. Company size is not a problem
2.9. Uncertainties
2.10. Inorganic vs organic
2.11. Impediments
2.12. Photovoltaics
2.13. Examples of company activity
2.13.1. Dow Chemical
2.13.2. Merck, DuPont and Honeywell
2.13.3. Bayer
2.14. Progress with Semiconductors
2.15. Printed and multilayer electronics and electrics needs new design rules
2.16. Metamaterials, nantennas and memristors
2.17. The toolkit becomes large
2.17.1. Three dimensional
2.17.2. Leveraging smart substrates
2.17.3. Planned applications can have plenty of area
2.17.4. Health and environment to the fore
2.17.5. Three generations?

3. THE MOST IMPORTANT EMERGING DEVICES AND THEIR REQUIREMENTS
3.1. Conductive patterning: antennas, electrodes, interconnects, metamaterials
3.1.1. Silver flake inks continue to reign supreme for printing
3.1.2. Alternatives gain share
3.1.3. ITO Replacement
3.1.4. For RFID Tags
3.1.5. For logic and memory
3.1.6. For sensors
3.1.7. For smart packaging
3.1.8. For memristors
3.2. CIGS Photovoltaics
3.2.1. Brief description of technology
3.3. DSSC Photovoltaics
3.3.1. Brief description of technology
3.4. Electrophoretic displays and alternatives
3.4.1. Brief description of the technology
3.4.2. Applications of E-paper displays
3.4.3. E ink
3.4.4. The Killer Application
3.4.5. SiPix, Taiwan
3.4.6. Alternatives - electrowetting
3.5. Inorganic LED
3.6. Li-ion battery rechargeable
3.7. Rechargeable lithium/lithium metal battery and PEM fuel cell
3.8. MEMS & NEMS
3.9. Organic Light Emitting Diode OLED displays and lighting
3.10. Power semiconductors
3.11. Supercapacitor
3.11.1. View of rollout of graphene based devices
3.12. Supercabattery
3.13. Touch screen
3.13.1. Main Touch Technologies
3.13.2. Leading Market Applications
3.13.3. ITO Alternatives for touch screens
3.13.4. Over 100 profiled organizations
3.14. Transistor, diode, thermistor, thyristor for electronics
3.15. Other devices of interest

4. CARBON NANOTUBES AND GRAPHENE
4.1. Carbon Nanotubes
4.2. Graphene
4.3. Carbon Nanotubes and graphene summary
4.4. 113 Organizations profiled

5. INDIUM COMPOUNDS IN THE NEW ELECTRONICS AND ELECTRICS
5.1. More than the story of ITO
5.2. Key in the newer light emitting devices
5.3. Quantum dots and FETs
5.4. Cost and printability are challenges

6. TITANIUM COMPOUNDS IN THE NEW ELECTRONICS AND ELECTRICS
6.1. Piezoelectrics, energy harvesters, supercapacitors, displays and sensors
6.2. Allied topic photocatalysis

7. ZINC COMPOUNDS FOR THE NEW ELECTRONICS AND ELECTRICS
7.1. Dielectric for insulation, capacitors and other devices
7.2. Improving the efficiency of UV LED

8. FLUORINE COMPOUNDS FOR THE NEW ELECTRONICS AND ELECTRICS
8.1.Rechargeable lithium, alkali metal fluorides and other fluorine chemistry

List of Tables


1.1.Description and images of the 37 families of new electronics and electrics
1.2.The 20 categories of chemical and physical property exploited by the key materials in the devices are identified
1.3.Four families of carbon allotrope needed in the new electronics and electrics
1.4.Organic materials used and researched for the 37 families of new electronics and electrics
1.5.138 manufacturers and putative manufacturers of lithium-based rechargeable batteries showing country, cathode and anode chemistry, electrolyte form, case, targeted applicational sectors and sales relationships and successes by veh
1.6.Examples of relatively less prevalent or less established formulations than those examined earlier
2.1.Examples of inorganic materials needed for printed electronics and their suppliers.
2.2.Comparison of the more challenging inorganic and organic materials used in printed and potentially printed electronics
2.3.Typical quantum dot materials from Evident Technologies and their likely application.
2.4.The leading photovoltaic technologies compared
3.1.Key chemicals and materials for conductive patterning: antennas, electrodes, interconnects, metamaterials
3.2.Product Overview of conductive printed electronics
3.3.Advantages and disadvantages of electrophoretic displays
3.4.Comparison between OLEDs and E-Ink of various parameters
3.5.138 manufacturers and putative manufacturers of lithium-based rechargeable batteries showing country, cathode and anode chemistry, electrolyte form, case, targeted applicational sectors and sales relationships and successes by veh
3.6.Some materials needs for small molecule vs polymeric OLEDs.
3.7.Organisations working in touch screens
3.8.The 20 categories of chemical and physical property exploited by the key materials in the devices are identified
3.9.Four families of carbon allotrope needed in the new electronics and electrics
3.10.Organic materials used and researched for the 37 families of new electronics and electrics
4.1.Semiconductors
4.2.Activities of 113 Organizations

List of Figures


1.1.Inorganic elements and compounds most widely needed for growth markets in the new electronics and electrics over the coming decade
1.2.Number of new device families using elemental or mildly alloyed aluminium, copper, gold, silicon and silver giving % of 37 device families analysed and typical functional form over the coming decade
1.3.The anions or metals in the most popular inorganic compounds in the new electronics by number of device families using them and percentage of the 37 device families (there is overlap for multi-metal formulations). Main functional
1.4.The incidence of the allotropes of carbon that are most widely being used, at least experimentally, for the 37 types of new electronics and electrics giving functional form and % and number of surveyed devices involved
1.5.The families of organic compound that are most widely being used or investigated for the new electronics as % of sample and number of device families using them
2.1.Some of the most promising elements employed in research and production of the new electronics and electrics - much broader than today and away from silicon
2.2.The increasing potential of progress towards the printing and multilayering of electric and electronic devices
2.3.Attributes and problems of inorganic, hybrid and organic thin film electronics form a spectrum
2.4.Likely impact of inorganic printed and potentially printed technology to 2020 - dominant technology by device and element. Dark green shows where inorganic technology is extremely important for the active (non-linear) components s
2.5.Mass production of flexible thin film electronic devices using the three generations of technology
2.6.Strategy options for chemical companies seeking a major share of the printed electronics market, with examples.
2.7.Metal interconnect and antennas on a BlueSpark printed manganese dioxide zinc battery supporting integral antenna and interconnects
3.1.Negative refractive index metamaterial bends electromagnetic radiation the "wrong" way
3.2.Split ring resonator and micro-wire array that form negative refractive index material when printed together in the correct dimensions
3.3.Schematic representation of a CIGS thin film solar cell
3.4.Principle of operation of electrophoretic displays
3.5.E-paper displays on a magazine sold in the US in October 2008
3.6.Retail Shelf Edge Labels from UPM
3.7.Secondary display on a cell phone
3.8.Amazon Kindle 2, launched in the US in February 2009
3.9.Electrophoretic display on a commercially sold financial card
3.10.Flow chart of the manufacture process
3.11.Process for printing LEDs
3.12.OLED structure showing left the vacuum -based technology
3.13.Examples of OLED light-emitting and hole transport molecules
3.14.Functions within a small molecule OLED, typically made by vacuum processing
3.15.Illustration of how the active matrix OLED AMOLED is much simpler than the AMLCD it replaces.
3.16.Families of power semiconductor
3.17.Latest power semiconductors by frequency of use
3.18.View of the rollout of graphene in advanced electrical and electronic components
3.19.Touch market forecast by technology in 2012
3.20.Conductance in ohms per square for the different printable conductive materials, at typical thicknesses used, compared with bulk metal, where nanotubes refers to carb on nanotube or graphene
4.1.Structure of single-wall carbon nanotubes
4.2.The chiral vector is represented by a pair of indices (n, m). T denotes the tube axis, and a1 and a2 are the unit vectors of graphene in real space
4.3.Targeted applications for carbon nanotubes by Eikos
5.1.Zinc oxide nanowires
5.2.SEM image of the vertically-aligned Ga-doped ZnO nanofiber

Upcoming Reports:

Wind Power Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2013 - 2019
By - Transparency Market Research
Wind power is defined as the transformation of wind energy into electrical energy using wind turbines. Wind is a kind of solar energy and is caused by the irregular heating of the atmosphere by the sun. This wind energy is utilized by the turbine to generate electricity. In this process turbines convert the kinetic energy of the wind into mechanical energy to generate electricity. This energy is further used in lighting, water pumping etc. Wind energy is a renewable source of energy and is present in abundance in atmosphere so no restriction of the usage as ample amount will be present...
Poland: bovine splits market
By - Williams and Marshal Strategy
This report presents a comprehensive overview of the bovine splits market in Poland and its state as of January 2014. It provides detailed analysis of the industry, its dynamics and structure. The purpose of the report is to describe the state of the bovine splits market in Poland, to present actual and retrospective information about the volumes and dynamics of production, imports, exports and consumption, the characteristics of the market for the period 2008-2012 and to build a forecast for the market development until 2018. In the same way, the report presents an elaborate overview of...
Greece: market of scarifiers, cultivators, weeders and hoes
By - Williams and Marshal Strategy
the price fluctuations, the growth and demand drivers of the market and the factors, influencing its development. Last but not least, the report presents a general overview of the economy of Greece in 2008-2012 and a forecast for its development in the medium term. The report on the scarifiers, cultivators, weeders and hoes market in Greece includes: Analysis and dynamics of the economy of Greece; Forecast for the development of the economy of Greece; Analysis and forecast of market volume and dynamics; Volume, dynamics and analysis of domestic production; Characteristics of market...

Research Assistance

We will be happy to help you find what you need.
Please call us or write us:

866-997-4948 (Us-Canada Toll Free)
Tel: +1-518-618-1030
Email: sales@researchmoz.us
Select License type:

Share this report

Related News

A Health Tech Incubator Started by GE Healthcare
Oct 30, 2014  
For the very first time, a health tech start up campus has been established by GE Healthcare at its headquarters at Helsinki, Finland. This area already has about twenty such healthcare start ups that are working on cloud services, wireless technologies, apps, and sensors that aim at improving healthcare. The main rationale behind such a step is providing opportunities for further...
Net Earnings of DuPont Increases 52% despite Agricultural Turmoil
Oct 29, 2014  
DuPont - The Wilmington, Del-based leading chemical company faced decline of three percent sales to $7.5 billion in the quarter ending of September 30. The company’s third-quarter earnings were increased by 52 percent to $433 million albeit the slow global growth and agricultural downside.   The company witnessed the biggest drags from chemical sales with eight percent...
Appeal for Sanitization in Construction Industry through Government Regulations: CIOB Ghana
Oct 29, 2014  
Rockson Dogbegah - The Chairman of the Chartered Institute of Building Ghana commented that the construction industry needs a thorough cleaning up and assurance of proper growth. Mr. Dogbegah also said that a few factors are extremely important for a proper development in the construction industry. These include keen adherence to standards, supreme sense of professionalism, and sheer pursuance...
Facebook Hints of Rise in Expenses in 2015, Shares Drop
Oct 29, 2014  
Facebook has announced on Tuesday that it is prepping for a dramatic rise in spending in the year 2015. This warning has come combined with a projected slowdown in the company’s revenues after revenues were analyzed at the end of the third quarter of the year. The plans of such hefty spending in the next financial year by the company are indicative of stress in the investor...
Samsung Records Poorest Profits in Q3 2014
Oct 29, 2014  
In the quarter ending September 2014, Samsung Electronics Co. Ltd registered the smallest earnings ever in two years. The drop in earnings can be easily attributed to heavy competition from new Chinese devices and the Apple phones. The net income stood at US$4 billion for the South Korea-based company. Apple has been Samsung’s strongest contender ever since the latter entered the...