Most-Needed Chemicals for New Disruptive Electronics and Electrics: De-risk your Investment

Published Date » 2013-04-17
No. Of Pages » 205
The chemistry of the new electronics and electrics is key to its future, whether it is invisible, tightly rollable, biodegradable, edible, employing the memristor logic of the human brain or possessing any other previously- impossible capability in a manufactured device. De-risking that material development is vital yet the information on which to base that has been unavailable. No more.   See how the metals aluminium, copper and silver are widely deployed, sometimes in mildly alloyed, nano, precursor, ink or other form. Understand the 12 basic compounds most widely used in the new electronics and electrics and compare them with compounds exhibiting the broadest range of appropriate electrical and optical functions for the future. Those seeking low volume, premium priced...

1.1. The most important materials by three criteria
1.2. Chemical giants reposition to benefit
1.2.1. Itochu and partners
1.2.2. BASF and partners
1.2.3. Dow and others
1.3. Need for de-risking
1.4. The most widely useful compounds
1.4.1. Many examples analysed
1.4.2. Possible future importance of the chemistry of iron
1.5. The most versatile compounds electronically
1.6. Disruptive new electronics and electrics - the market pull
1.7. Fine metals and semiconductors that will be most widely used - survey result
1.8. Fine inorganic compounds most widely needed - survey results
1.9. The inorganic compounds - detailed results for 37 families of device
1.10. Allotropes of carbon most widely needed - survey result
1.11. Fine organic compounds most widely needed - survey results
1.12. Survey results for lithium salts in the biggest battery market
1.13. Less prevalent or less established formulations

2.1. Elements being targeted
2.2. Here come composites and mixtures
2.3. Disparate value propositions
2.4. Here comes printing
2.5. Great breadth
2.6. Fragile chemicals
2.7. Challenges of ink formulation
2.8. Company size is not a problem
2.9. Uncertainties
2.10. Inorganic vs organic
2.11. Impediments
2.12. Photovoltaics
2.13. Examples of company activity
2.13.1. Dow Chemical
2.13.2. Merck, DuPont and Honeywell
2.13.3. Bayer
2.14. Progress with Semiconductors
2.15. Printed and multilayer electronics and electrics needs new design rules
2.16. Metamaterials, nantennas and memristors
2.17. The toolkit becomes large
2.17.1. Three dimensional
2.17.2. Leveraging smart substrates
2.17.3. Planned applications can have plenty of area
2.17.4. Health and environment to the fore
2.17.5. Three generations?

3.1. Conductive patterning: antennas, electrodes, interconnects, metamaterials
3.1.1. Silver flake inks continue to reign supreme for printing
3.1.2. Alternatives gain share
3.1.3. ITO Replacement
3.1.4. For RFID Tags
3.1.5. For logic and memory
3.1.6. For sensors
3.1.7. For smart packaging
3.1.8. For memristors
3.2. CIGS Photovoltaics
3.2.1. Brief description of technology
3.3. DSSC Photovoltaics
3.3.1. Brief description of technology
3.4. Electrophoretic displays and alternatives
3.4.1. Brief description of the technology
3.4.2. Applications of E-paper displays
3.4.3. E ink
3.4.4. The Killer Application
3.4.5. SiPix, Taiwan
3.4.6. Alternatives - electrowetting
3.5. Inorganic LED
3.6. Li-ion battery rechargeable
3.7. Rechargeable lithium/lithium metal battery and PEM fuel cell
3.8. MEMS & NEMS
3.9. Organic Light Emitting Diode OLED displays and lighting
3.10. Power semiconductors
3.11. Supercapacitor
3.11.1. View of rollout of graphene based devices
3.12. Supercabattery
3.13. Touch screen
3.13.1. Main Touch Technologies
3.13.2. Leading Market Applications
3.13.3. ITO Alternatives for touch screens
3.13.4. Over 100 profiled organizations
3.14. Transistor, diode, thermistor, thyristor for electronics
3.15. Other devices of interest

4.1. Carbon Nanotubes
4.2. Graphene
4.3. Carbon Nanotubes and graphene summary
4.4. 113 Organizations profiled

5.1. More than the story of ITO
5.2. Key in the newer light emitting devices
5.3. Quantum dots and FETs
5.4. Cost and printability are challenges

6.1. Piezoelectrics, energy harvesters, supercapacitors, displays and sensors
6.2. Allied topic photocatalysis

7.1. Dielectric for insulation, capacitors and other devices
7.2. Improving the efficiency of UV LED

8.1.Rechargeable lithium, alkali metal fluorides and other fluorine chemistry

List of Tables

1.1.Description and images of the 37 families of new electronics and electrics
1.2.The 20 categories of chemical and physical property exploited by the key materials in the devices are identified
1.3.Four families of carbon allotrope needed in the new electronics and electrics
1.4.Organic materials used and researched for the 37 families of new electronics and electrics
1.5.138 manufacturers and putative manufacturers of lithium-based rechargeable batteries showing country, cathode and anode chemistry, electrolyte form, case, targeted applicational sectors and sales relationships and successes by veh
1.6.Examples of relatively less prevalent or less established formulations than those examined earlier
2.1.Examples of inorganic materials needed for printed electronics and their suppliers.
2.2.Comparison of the more challenging inorganic and organic materials used in printed and potentially printed electronics
2.3.Typical quantum dot materials from Evident Technologies and their likely application.
2.4.The leading photovoltaic technologies compared
3.1.Key chemicals and materials for conductive patterning: antennas, electrodes, interconnects, metamaterials
3.2.Product Overview of conductive printed electronics
3.3.Advantages and disadvantages of electrophoretic displays
3.4.Comparison between OLEDs and E-Ink of various parameters
3.5.138 manufacturers and putative manufacturers of lithium-based rechargeable batteries showing country, cathode and anode chemistry, electrolyte form, case, targeted applicational sectors and sales relationships and successes by veh
3.6.Some materials needs for small molecule vs polymeric OLEDs.
3.7.Organisations working in touch screens
3.8.The 20 categories of chemical and physical property exploited by the key materials in the devices are identified
3.9.Four families of carbon allotrope needed in the new electronics and electrics
3.10.Organic materials used and researched for the 37 families of new electronics and electrics
4.2.Activities of 113 Organizations

List of Figures

1.1.Inorganic elements and compounds most widely needed for growth markets in the new electronics and electrics over the coming decade
1.2.Number of new device families using elemental or mildly alloyed aluminium, copper, gold, silicon and silver giving % of 37 device families analysed and typical functional form over the coming decade
1.3.The anions or metals in the most popular inorganic compounds in the new electronics by number of device families using them and percentage of the 37 device families (there is overlap for multi-metal formulations). Main functional
1.4.The incidence of the allotropes of carbon that are most widely being used, at least experimentally, for the 37 types of new electronics and electrics giving functional form and % and number of surveyed devices involved
1.5.The families of organic compound that are most widely being used or investigated for the new electronics as % of sample and number of device families using them
2.1.Some of the most promising elements employed in research and production of the new electronics and electrics - much broader than today and away from silicon
2.2.The increasing potential of progress towards the printing and multilayering of electric and electronic devices
2.3.Attributes and problems of inorganic, hybrid and organic thin film electronics form a spectrum
2.4.Likely impact of inorganic printed and potentially printed technology to 2020 - dominant technology by device and element. Dark green shows where inorganic technology is extremely important for the active (non-linear) components s
2.5.Mass production of flexible thin film electronic devices using the three generations of technology
2.6.Strategy options for chemical companies seeking a major share of the printed electronics market, with examples.
2.7.Metal interconnect and antennas on a BlueSpark printed manganese dioxide zinc battery supporting integral antenna and interconnects
3.1.Negative refractive index metamaterial bends electromagnetic radiation the "wrong" way
3.2.Split ring resonator and micro-wire array that form negative refractive index material when printed together in the correct dimensions
3.3.Schematic representation of a CIGS thin film solar cell
3.4.Principle of operation of electrophoretic displays
3.5.E-paper displays on a magazine sold in the US in October 2008
3.6.Retail Shelf Edge Labels from UPM
3.7.Secondary display on a cell phone
3.8.Amazon Kindle 2, launched in the US in February 2009
3.9.Electrophoretic display on a commercially sold financial card
3.10.Flow chart of the manufacture process
3.11.Process for printing LEDs
3.12.OLED structure showing left the vacuum -based technology
3.13.Examples of OLED light-emitting and hole transport molecules
3.14.Functions within a small molecule OLED, typically made by vacuum processing
3.15.Illustration of how the active matrix OLED AMOLED is much simpler than the AMLCD it replaces.
3.16.Families of power semiconductor
3.17.Latest power semiconductors by frequency of use
3.18.View of the rollout of graphene in advanced electrical and electronic components
3.19.Touch market forecast by technology in 2012
3.20.Conductance in ohms per square for the different printable conductive materials, at typical thicknesses used, compared with bulk metal, where nanotubes refers to carb on nanotube or graphene
4.1.Structure of single-wall carbon nanotubes
4.2.The chiral vector is represented by a pair of indices (n, m). T denotes the tube axis, and a1 and a2 are the unit vectors of graphene in real space
4.3.Targeted applications for carbon nanotubes by Eikos
5.1.Zinc oxide nanowires
5.2.SEM image of the vertically-aligned Ga-doped ZnO nanofiber

Upcoming Reports:

Mineral Oil Market - Global Industry Analysis, Size, Share, Growth, Trends And Forecast, 2013 - 2019
By - Transparency Market Research
Mineral oil is a mixture of different alkanes obtained from petroleum distillation process. It is a colorless, transparent liquid and formed as a byproduct during petroleum distillation to manufacture petroleum based products. Mineral oil has applications in biomedicine, cosmetics, mechanical & industrial use as thermic fluid, food preparation and others.  Growing demand from cosmetics and food industry is expected to drive the mineral oil market. Owing to rising consumer demand from the growing young population and changing lifestyle is driving the cosmetics industry....
Muconic Acid Market - Global Industry Analysis, Size, Share, Growth, Trends And Forecast, 2013 - 2019
By - Transparency Market Research
A dicarboxylic acid, muconic acid is present primarily in several isomeric forms, viz., trans,trans-muconic acid; cis,cis-muconic acid and cis,trans-muconic acid. Muconic acid can be used in the manufacture of several derivatives such as adipic acid, HMDA, caprolactam and CHDA/CHDM among others. In addition, trans,trans-muconic acid (ttMA) is a biomarker for detecting human exposure to benzene. Furthermore, muconic acid can be used in the production of various fibers and plastics including nylon-6,6, polyethylene terephthalate (PET) and polyurethane among others. Growing demand for...
Molecular Spectroscopy Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2013 - 2019
By - Transparency Market Research
Spectroscopy is one of the most advanced and famous analytical technologies used extensively in large number of fields, from healthcare to manufacturing. Spectroscopy is the measurement of interaction between radiated energies emitted by certain matter. The spectroscopy is considered as a function of wavelength. In spectroscopic studies, electromagnetic radiations are allowed to pass through the sample to be analyzed; the sample molecules absorb only those wavelengths which can convert their energy level, from ground state to excited state. The detector installed on other side...

Research Assistance

We will be happy to help you find what you need.
Please call us or write us:

866-997-4948 (Us-Canada Toll Free)
Tel: +1-518-618-1030
Select License type:

Share this report

Related News

Low Gas Prices Hurt Utahs Energy Industry
Dec 18, 2014  
Due to excessive petroleum on the global market, gas prices are heavily tumbling in several places of the world. This aspect could prove effective and great for consumers in most parts of the world, but it is not so for the Utah. The petroleum industry in Utah has a tough time with the state budget.  In Utah, the average gas prices have declined to around $2.64 a gallon. This has...
The 3 Dining Trend to Look Out For in 2015
Dec 17, 2014  
Dining is a vibrant, dynamic subject. You can never set down a list of definitive rules for it, and since it depends on our own fickle taste, it is always subject to drastic changes and welcoming to new trends. Here’s a list of dining trends that are on the cusp of becoming mainstream and will surely make that step up in the coming year. 1. Increasing Acceptance of Technology:...
Bolivian Air Force Receives the Super Puma Helicopters
Dec 16, 2014  
It was declared by the Airbus Helicopters that the Bolivian Air Force was the recipient of second of the six Airbus AS332 C1e Super Puma helicopters. The Super Pumas are generally used for several internal security missions and counter narcotics. The rest of the four helicopters will start operating from the year 2016. In late 2013, the light medium helicopters were purchased by the FAB for...
Leaked Emails Prove to be Challenging for Sony
Dec 15, 2014  
It has been revealed via leaked emails that there exists a cultural gulf between Sony Pictures Entertainment, the Hollywood subsidiary on the one hand and Japan’s Sony Corp on the other. This poses a major challenge to the CEO Kazuo Hirai to bring about positive changes in the loss making company under the One Sony slogan.  Over the past six years, this has been the fifth...
British Construction Firms to Hire More by 2015
Dec 10, 2014  
As per the latest survey carried out by Manpower, increasing workload in Britain’s construction industry is calling for rise in employment opportunities. It is expected that in the coming year, various construction firms will be on a hiring spree. Paucity of trained and skilled workers in U.K. based building firms has led to greater focus on hiring of Portuguese bricklayers at a wage...