ResearchMoz

Electric Motors for Electric Vehicles 2013 - 2023: Forecasts, Technologies, Players

IDTechEx
Published Date » 2013-11-30
No. Of Pages » 265

All electric vehicles have at least one traction motor, so the market for electric vehicle traction motors is one of the largest markets for electric vehicle parts and a primary determinant of the performance and affordability of a given vehicle. Indeed, IDTechEx Research find that in 2013 44.6 million electric motors will be needed for vehicles, rising to 147.7 million in 2023.
 
Today, the motors that propel electric vehicles on land, through water and in the air are mainly brushless because brushed commutator motors are on the way out. Most of the number and the value of those brushless traction motors lies in permanent magnet synchronous ones, notably Brushless DC ""BLDC"", a form with trapezoidal waveform, and Permanent Magnet AC ""PMAC"", a type with a sinusoidal waveform. No matter: they both have excellent performance including simple provision of reverse and regenerative braking. However, that dominance is about to change. The main reason is not those well publicised but elusive in-wheel motors coming in at two to six per vehicle but simply the move to much larger vehicles and therefore motors.

Small vehicles today

At present, half of the money spent on traction motors for electric vehicles concerns very small vehicles such as mobility scooters and power chairs for the disabled that are so popular in Europe and the USA, mobile robots in the home in Japan and ""walkies"" meaning pedestrian- operated golf caddies very popular in Japan, stair walkers, motorised lifters, sea scooters that pull the scuba diver and, of course, those hugely popular two wheelers in China with 34 million e-bikes alone sold worldwide in 2011. Add tiny quad bikes, All Terrain Vehicles ATVs, go-karts and golf cars and their derivatives. 92% of electric vehicle traction motors are currently needed for those small vehicles and they are therefore sold substantially on price.

Big vehicles tomorrow

In a huge change in mix in the electric vehicle market and therefore the electric motor market, those small EV motors become a mere 25% of the electric vehicle motor market value in 2023 as the big vehicles, and therefore big motors, become very successful. For example, the value of the market for military electric vehicles increases over 20 times as military forces buy battlefield hybrids rather than just small pure electric runabouts. The bus market value rockets nearly seven times as China, in particular, buys huge numbers of large hybrid versions as part of its national transportation plan. Better reported is the burgeoning electric car market where hybrid versions in particular are behind a nearly six fold growth in market value over the coming decade. All this turns the world of traction motors on its head.

Different motors needed

The electric motors that are required for the bulk of the market by value are becoming much higher in power and torque. For example, an Autonomous Underwater Vehicle AUV - like a torpedo but making its own decisions - can push 400 kW, a large forklift or bus delivers 250-350 kW per motor but cars typically need up to 70kW per motor with a low-cost electric bicycle merely offering a 0.25 kW motor. At the large end, torque from the traction motor is up to 6000 Nm yet only 0.2 to 0.5 Nm is needed by many two wheelers and mobility vehicles for the disabled. 

The heavy end is territory where the asynchronous motor is winning now that its performance has improved and the cost of the control electronics has been got under control. For example, the Heavy Industrial category refers to heavy lifting as with forklifts and mobile cranes and here IDTechEx finds that 89% fit asynchronous motors otherwise known as AC induction - brushless traction motors with no permanent magnets. Around 63% of military vehicles and 52% of large buses fit asynchronous motors on our analysis of 212 electric vehicles, past, present and planned. Toyota, world leader in electric vehicles by a big margin, is using asynchronous motors for its forklifts and buses and has now developed them for possible use on its cars, which currently use permanent magnet motors.

Caution needed

Nonetheless, we must be very careful about sweeping generalisations. Many experts believe that asynchronous motors will sweep the board at 5kW power upwards. That is tantamount to saying that they will take over 70% of the traction motor market value because there are even 5kW motors in golf cars and the smallest leisure boats. Although the enthusiasts can point to such motors used today in golf cars variants as one example, it is important to observe the very rapid improvements in synchronous motors including taming the noise and vibration of the switched reluctance synchronous motors that need no expensive magnets. 

IDTechEx does not accept the conflict as one primarily between those using expensive neodymium magnets and those with allegedly lower inherent costs. In the larger electric vehicles performance matters more than cost and anyway, asynchronous motors use a lot of expensive copper and control circuitry.

Performance matters more

The winners in future traction motor markets will win on performance more than price, this including very different criteria in different vehicles with many problems still to solve. For example, Boeing has a contract to develop an Unmanned Aerial Vehicle UAV that can stay aloft for five years. It has subcontracted Newcastle University in the UK to create a traction motor with several times improvement in power- to-weight ratio in order to make this possible. NASA's dream of small aircraft taking off purely under the power from in-wheel motors may call for new motor designs as will the thunderbolt of power from regenerative braking of landing airliners that then become electric vehicles while on the ground. 

Fault tolerant motors are needed in other applications and while Chorus Motors has developed an asynchronous one, Protean Electric has announced an equally impressive synchronous one. Reducing or eliminating the need for water cooling is a welcome advance as yet rarely on offer with large motors. Working at the more efficient high voltages of 300-700V means less copper, thinner, more manageable wiring and less power wastage. Not all motors meet these requirements.

In-wheel motors not as portrayed

We fear that only 2.5% of electric vehicles by land, water and air will have multiple traction motors in 2022 and that may mean only 5.6% of traction motors sold will be for multi-motor vehicles - mainly in-wheel motors for land vehicles. That is big enough for two or three suppliers to make enduringly profitable, substantial businesses out of supplying them but it is not a primary route to leadership in the overall traction motor business. Of course, in-wheel motors for single motor vehicles, notably two wheelers will be separate from that and even more successful than they are today, maybe over 100 million of these being sold - largely on price - in 2022.
 
While there are a few asynchronous in-wheel motors, nearly all of the sales of in-wheel motors concern the usually smaller synchronous versions, so let us now look more closely at the glamorous world of in-wheel motors, already a huge success in e-bikes, selling by the tens of millions. Here a warning comes for Mitsubishi deciding not to use its in-wheel motors in its best-selling MiEV pure electric car because of cost. Currently you cannot have several motors for the price of one when you want to adopt in-wheel power. While motor manufacturers hope that a price premium will be on offer where they eliminate transmission and differential, there are problems of ride to finance and concerns at Fiat, for example, about wheels jamming.

Wake up time

It is wakeup time for the electric vehicle traction motor industry. Our survey of 123 manufacturers shows far too few making asynchronous or switched reluctance synchronous motors and larger, high power, motors with strong traction or even exceptionally light weight powerful motors. There are far too many making traction motors with brushes. In short, this is an industry structured for the past that is going to have a very nasty surprise when the future comes. Most of it is not even talking to the vehicle manufacturers that will spend most to buy traction motors in the years to come. Many think easy money comes from pursuing the obvious, notably selling to the fearsomely competitive electric car market where 90% of your customers are headed for insolvency. In China alone, there are over 100 manufacturers of electric cars and none are successful.

Complete Assessment of the Topic

The new report ""Electric Motors for Electric Vehicles 2013-2023: Forecasts, Technologies, Players"" wrestles with all these factors. It provides detailed analysis of all these aspects, including ten year forecasts. If you are looking to understand the big picture, the opportunity, the problems you can address, this report is a must. Researched by multilingual IDTechEx consultants based in four countries and three continents, this report builds on ten years of knowledge of the industry. The report covers forecasts for motors by vehicle type for ten years, giving the number of vehicles by type, average motor price and total market value. Requirements for motors and forecasts for the following vehicle types are covered:

  • Hybrid cars
  • Pure electric cars
  • Heavy industrial
  • Buses
  • Light industrial/commercial
  • Micro EV/quadricycle
  • Golf car and motorized gold caddy
  • Mobility for the disabled
  • Two-wheel and allied
  • Military
  • Marine
  • Other
TABLE OF CONTENT

1. EXECUTIVE SUMMARY AND CONCLUSIONS
1.1. Traction motor forecasts of numbers
1.2. Global value market for vehicle traction motors
1.3. Definition and background
1.4. Shape of motors
1.5. Location of motors
1.6. Unique major new survey
1.7. Blunt motor talk at EV Japan
1.8. Switched reluctance motors a disruptive traction motor technology?
1.9. Three ways that traction motor makers race to escape rare earths
1.9.1. Synchronous motors with no magnets - switched reluctance
1.9.2. Synchronous motors with new magnets
1.9.3. Asynchronous motors
1.9.4. More to come
1.10. In-wheel motor adoption criteria
1.11. Integration of motor and other parts
1.12. Industry consolidation
1.13. Industry collaboration 2013
1.13.1. Visedo: Axco Motors: Semikron: WIMA: Helsinki Metropolia University of Applied Sciences: Power Conversion B.V
1.13.2. Yasa Motors: Sevcon: Westfield Sportcars: Potenza Technology
1.14. Priority for Industrial and Commercial Vehicles
1.15. Lessons from eCarTec Munich October 2013

2. INTRODUCTION
2.1. History of electric traction motors
2.2. Types of motor favoured in electric vehicles
2.2.1. Types of traction motor in summary
2.2.2. Asynchronous traction motors
2.2.3. Size and number of motors
2.2.4. Shapes of motor
2.2.5. Synchronous PM traction motors
2.2.6. Dealing with magnet cost
2.2.7. Main choices of EV motors in future
2.2.8. Axial flux vs radial flux motors
2.3. Sophisticated motors bridging gaps in performance
2.3.1. Advanced asynchronous motor variant - Chorus Motors
2.3.2. Advanced synchronous PM motor - Protean Electric
2.3.3. Motor position
2.3.4. The relative merits of the motor positions in electric bicycles and e-bikes
2.3.5. Fraunhofer IFAM
2.4. Remaining challenges
2.4.1. In-wheel hybrids
2.4.2. Electric corner modules (ECMs)
2.4.3. Many in- and near-wheel motors: very few production wins
2.4.4. SIM Drive in wheel traction
2.4.5. In wheel motors for aircraft
2.4.6. Move to high voltage
2.4.7. Environmental challenges
2.4.8. Many options and many needs
2.4.9. Lack of standards
2.5. Electric outboard motors
2.5.1. Regen Nautic Inc USA

3. ANALYSIS OF 129 TRACTION MOTOR MANUFACTURERS
3.1. Collaboration
3.1.1. Visedo: Axco Motors: Semikron: WIMA: Helsinki Metropolia University of Applied Sciences: Power Conversion B.V

4. 212 ELECTRIC VEHICLES AND THEIR MOTORS

5. INTERVIEWS AND NEWLY REPORTED OPINION ON MOTOR TRENDS
5.1. Asynchronous vs Synchronous
5.2. Axial vs radial flux
5.3. Who will succeed with electric microcars
5.4. Extending the market

6. MARKET FORECASTS
6.1. Traction motor forecasts of numbers
6.2. Global value market for vehicle traction motors
6.3. Definition and background
6.4. Shape of motors
6.5. Location of motors
6.6. Unique major new survey

APPENDIX 1: LESSONS FROM BATTERY/EV EVENT MICHIGAN SEPTEMBER 2013

List of Tables


1.1. Number of traction motors in electric vehicles worldwide 2012-2023 in thousands
1.2. Vehicle numbers (thousand) 2012-2023
1.3. Number of traction motors in multi-motor vehicles 2012-2023 (millions) and percentage of all vehicle traction motors rounded
1.4. Proportion of electric vehicles with more than one motor 2012-2023
1.5. Number of electric vehicles with more than one electric motor 2012-2023 in thousands and percentage of all electric vehicles rounded
1.6. Average number of motors per multi-motor vehicle 2011-2021
1.7. Proportion of electric vehicles with one motor 2012-2023
1.8. Number of electric vehicles with one electric motor ie number of motors in single-motor vehicles in thousands
1.9. Price of traction motor(s) to vehicle manufacturer in $K per vehicle
1.10. Motor market value $ million paid by vehicle manufacturer 2012-2023
1.11. Summary of preferences of traction motor technology for vehicles
1.12. Advantages vs disadvantages of brushed vs brushless vehicle traction motors for today's vehicles
1.13. Most likely winners and losers in the next decade
1.14. Supplier numbers listed by continent
1.15. Traction motor supplier numbers listed by country in alphabetical order
1.16. Applications targeted by our sample of motor suppliers vs market split, listed in order of 2012 market size
1.17. Suppliers of vehicle traction motors - split between number offering asynchronous, synchronous and both, where identified
1.18. Suppliers offering brushed, brushless and both types of synchronous motors, where identified
1.19. Distribution of vehicle sample by applicational sector
1.20. Vehicles with asynchronous, synchronous or both options by category in number and percentage of category, listed in order of declining asynchronous percentage
1.21. 212 electric vehicle models analysed by category for % asynchronous, power and torque of their electric traction motors and where intensive or rough use is most typically encountered. The rated power and traction data are enhanced
1.22. Percentage of old and abandoned models in the survey that use asynchronous or synchronous motors
1.23. Number of vehicles surveyed that have a mention of using brushed DC synchronous motors, by type of vehicle
1.24. Other motor features declared by vehicle manufacturers
1.25. Number of cars sampled that had one, two, three or four traction electric motors
1.26. Ex factory unit price of EVs, in thousands of US dollars, sold globally, 2012-2023, by applicational sector, rounded
1.27. Ex factory value of EVs, in billions of US dollars, sold globally, 2012-2023, by applicational sector, rounded
2.1. 2000 year history of electric traction motors and allied technologies
2.2. The main choices of electric vehicle traction motor technology over the next decade.
2.3. A comparison of potential and actual electric traction motor technologies
2.4. Comparison of outer‐rotor and inner‐rotor motors
2.5. Relative merits of the motor positions in electric bicycles and e-bikes
2.6. Extracts from some Azure Dynamics traction motor specifications
2.7. Extracts from some ABB traction motor specifications in imperial units
3.1. 125 vehicle traction motor manufacturers by name, country, asynchronous/synchronous, targeted vehicle types, claims and images
3.2. Supplier numbers listed by continent
3.3. Supplier numbers listed by country
3.4. Targeted applications vs market split.
3.5. Suppliers of vehicle traction motors - split between number offering asynchronous, synchronous and both, where identified
3.6. Suppliers offering brushed, brushless and both types of synchronous motors, where identified
3.7. Examples of train traction motor suppliers
4.1. 212 electric vehicle manufacturers, vehicle examples, asynchronous or synchronous motor used, motor details where given, motor manufacturer and number of motors per vehicle.
4.2. Market value split over the next decade between different vehicle categories
4.3. Vehicles with asynchronous, synchronous or both options by category in number and percentage of category, listed in order of declining asynchronous percentage.
4.4. 212 electric vehicle models analysed by category
4.5. Percentage of old and abandoned models in the survey that use asynchronous or synchronous motors
4.6. Number of vehicles surveyed that have a mention of using DC synchronous motors, by type of vehicle
4.7. Other motor features declared by vehicle manufacturers.
4.8. Number of cars sampled that had one, two, three or four traction electric motors
4.9. Summary of preferences of traction motor technology for vehicles.
4.10. Most mentioned motor suppliers
6.1. Number of traction motors in electric vehicles worldwide 2012-2023 in thousands
6.2. Vehicle numbers (thousand) 2012-2023
6.3. Number of traction motors in multi-motor vehicles 2012-2023 and percentage of all vehicle traction motors rounded
6.4. Proportion of electric vehicles with more than one motor 2012-2023
6.5. Number of electric vehicles with more than one electric motor 2012-2023 in thousands and percentage of all electric vehicles rounded
6.6. Average number of motors per multi-motor vehicle 2012-2023
6.7. Proportion of electric vehicles with one motor 2012-2023
6.8. Number of electric vehicles with one electric motor ie number of motors in single-motor vehicles in thousands
6.9. Price of traction motor(s) to vehicle manufacturer in $K per vehicle
6.10. Motor market value $ million paid by vehicle manufacturer 2012-2023
6.11. Summary of preferences of traction motor technology for vehicles
6.12. Advantages vs disadvantages of brushed vs brushless vehicle traction motors for today's vehicles
6.13. Most likely winners and losers in the next decade
6.14. Supplier numbers listed by continent
6.15. Traction motor supplier numbers listed by country in alphabetical order
6.16. Applications targeted by our sample of motor suppliers vs market split, listed in order of 2012 market size
6.17. Suppliers of vehicle traction motors - split between number offering asynchronous, synchronous and both, where identified
6.18. Suppliers offering brushed, brushless and both types of synchronous motors, where identified
6.19. Distribution of vehicle sample by applicational sector
6.20. Vehicles with asynchronous, synchronous or both options by category in number and percentage of category, listed in order of declining asynchronous percentage
6.21. 212 electric vehicle models analysed by category for % asynchronous, power and torque of their electric traction motors and where intensive or rough use is most typically encountered. The rated power and traction data are enhanced
6.22. Percentage of old and abandoned models in the survey that use asynchronous or synchronous motors
6.23. Number of vehicles surveyed that have a mention of using brushed DC synchronous motors, by type of vehicle
6.24. Other motor features declared by vehicle manufacturers
6.25. Number of cars sampled that had one, two, three or four traction electric motors
6.26. Ex factory unit price of EVs, in thousands of US dollars, sold globally, 2012-2023, by applicational sector, rounded
6.27. Ex factory value of EVs, in billions of US dollars, sold globally, 2012-2023, by applicational sector, rounded

List of Figures


1.1. Number of traction motors in electric vehicles worldwide 2012-2023 in thousands
1.2. Motor market value $ million paid by vehicle manufacturer 2012-2023
1.3. Location of motors sold in 2022 in vehicles in which they are fitted, in millions of motors and percent of all motors with all figures rounded
1.4. Supplier numbers listed by continent
1.5. Traction motor supplier numbers listed by country
1.6. Targeted applications on top vs market value split in 2012 centre and 2022 on bottom
1.7. Suppliers of vehicle traction motors - split between number offering asynchronous, synchronous and both, where identified
1.8. Number of vehicles surveyed that have a mention of using brushed DC synchronous motors, by type of vehicle
1.9. Number of cars sampled that had one, two, three or four traction electric motors
1.10. Ex factory unit price of EVs, in thousands of US dollars, sold globally, 2012-2023, by applicational sector, rounded
1.11. Ex factory value of EVs, in billions of US dollars, sold globally, 2012-2023, by applicational sector, rounded
1.12. Poster displays concerning switched reluctance traction motors
2.1. Cri Cri motors
2.2. Multiple electric motors on a NASA solar powered, unmanned aircraft for the upper atmosphere
2.3. Bicycle hub motor rotor left and stator right
2.4. Axial flux in-wheel motor driving a bicycle and a propeller
2.5. 60/15 kW Chorus Meshcon motor
2.6. Protean in-wheel motor for on-road vehicles
2.7. Innovative electric bicycle motor
2.8. A motorcycle with off-center motor near hub
2.9. Mitsubishi in-wheel applications
2.10. Construction of an in-wheel motor
2.11. Mitsubishi in-wheel motor
2.12. Lohner-Porsche electric vehicle of 1898
2.13. Volvo ReCharge concept hybrid
2.14. Fraunhofer in-wheel motor on an Artega GT
2.15. Mine resistant ambush protected - All Terrain Vehicle MATV
2.16. MATV structure
2.17. Elaphe axial flux, permanent magnet synchronous traction motors of unusually high power-to-weight and torque-to-weight ratio
2.18. SIM Drive in-wheel traction
2.19. EMRAX 222 Duplex Motor
2.20. Traction battery pack nominal energy storage vs battery pack voltage for mild hybrids in red, plug in hybrids in blue and pure electric cars in green
2.21. Thruster for Deepflight personal submarine
2.22. Propulsion systems of a swimmer AUV
2.23. New Intermotor brushless permanent magnet marine traction motor
2.24. Brothers Willisits pure electric outboard motor
2.25. EMotor 75kW pure electric outboard motor with synchronous permanent magnet motor, asynchronous optional. The exposed motor is shown left.
2.26. CERV
2.27. CERV motor integration
2.28. Trolling electric outboard motors
2.29. Torqeedo advanced design of small electric outboard motor
2.30. Aquawatt electric outboard motor
2.31. Aquawatt electric outboard motor in action
2.32. The 180 hp outboard developed for Campion Marine of Canada
2.33. Unit and value sales of outboard motors in the European Union, the USA and the rest of the world and trade flows
2.34. ReGen Nautic hybrid powertrain
5.1. Barefoot motor ATV motor in place
6.1. Number of traction motors in electric vehicles worldwide 2012-2023 in thousands
6.2. Motor market value $ million paid by vehicle manufacturer 2012-2023
6.3. Location of motors sold in 2022 in vehicles in which they are fitted, in millions of motors and percent of all motors with all figures rounded. Figures in red refer to high priced motors and figures in green refer to low priced mo
6.4. Supplier numbers listed by continent
6.5. Traction motor supplier numbers listed by country
6.6. Targeted applications on top vs market value split in 2012 centre and 2022 on bottom
6.7. Suppliers of vehicle traction motors - split between number offering asynchronous, synchronous and both, where identified
6.8. Number of vehicles surveyed that have a mention of using brushed DC synchronous motors, by type of vehicle
6.9. Number of cars sampled that had one, two, three or four traction electric motors
6.10. Ex factory unit price of EVs, in thousands of US dollars, sold globally, 2012-2023, by applicational sector, rounded
6.11. Ex factory value of EVs, in billions of US dollars, sold globally, 2012-2023, by applicational sector, rounded

Upcoming Reports:

Therapeutic Vaccines Market - Global Industry Analysis, Market Share, Size, Growth, Trends, and Forecast, 2012 - 2018
By - Transparency Market Research
Therapeutic vaccines function by triggering a body immune response against a disease. The global therapeutic vaccines market was valued at USD 292 million in 2011. The introduction of therapeutic vaccines has opened up new avenues in the field of chronic disease treatment and prophylactic immunization. Provenge was the first U.S. FDA approved immunotherapy drug to treat prostate cancer in men in 2010, which has encouraged rigorous research and development initiatives by pharmaceutical companies to develop novel vaccines for untapped disease segments. As a result of these...
Cystic Fibrosis Therapeutics Market - Global Industry Analysis, Size, Share, Growth, Trends And Forecast, 2013 - 2019
By - Transparency Market Research
Cystic Fibrosis (CF), also known as mucoviscidosis, is a genetic disorders that affects the lungs, pancreas, liver and intestine. It is characterized by abnormal transport of chloride and sodium across the epithelium. It leads to secretion of stick and thick mucus, which obstruct pancreatic enzyme activity in the body. Global market of CF therapeutics is rapidly growing, due to increased innovations and introduction of new drugs for the treatment of the disease. Rising prevalence of CF among large population base followed by increased R&D investment are also supporting factor...
Electrophysiology (EP) Devices Market - Global Industry Size, Market Share, Trends, Analysis, And Forecasts 2012 - 2018
By - Transparency Market Research
Increasing incidences of sudden cardiac arrests, growth in the use of robotic guided catheters in diagnostic procedures, and increase in the arrhythmia population are some of the major factors driving the growth of electrophysiology devices industry. Need to reduce diagnostic procedure time, improve success rate, and reduce human exposure to radiations is driving technological innovations in this industry.  The global electrophysiology (EP) devices market is expected to witness significant growth rate and reach USD 4.4 billion by 2015 at a CAGR of 9.7% during the forecast...

Research Assistance

We will be happy to help you find what you need.
Please call us or write us:

866-997-4948 (Us-Canada Toll Free)
Tel: +1-518-618-1030
Email: sales@researchmoz.us
Select License type:

Share this report

Related News

Scientists Identify Cure for Dengue
Apr 18, 2014  
In a breakthrough discovery that can change the way dengue is treated, scientists have identified a drug target for the deadly dengue viruses. This discovery may help pave the way for discovery of vaccines that can cure this condition that affects nearly 390 million people throughout the world each year.  Scientists have used a new technique for this discovery to show that a region...
India is Facing a Cancer Crisis
Apr 15, 2014  
India is currently facing a cancer crisis – reports a recent research carried out at the King’s college London, in collaboration with the Tata Memorial Cancer Centre, Mumbai.  The reasons estimated for this crisis comprise of increasing rates of smoking, unequal access to proper treatment and belated diagnosis.  Every year, India witnesses around one...
Microparticle Tags to Check Counterfeit Goods Invented
Apr 14, 2014  
Researchers from the Massachusetts Institute of Technology have invented a new set of microparticles that can easily be read by smartphones and establish the authenticity of currency, electronic items and luxury goods.  This strategy is among those countless measures taken by big brands and companies to label their legitimate products in order to stop illegal copies of the...
USFDA Approves Lupins Generic Diabetic Drug
Apr 10, 2014  
The United States Food and Drugs Administration (USFDA) has finally approved Lupin Pharmaceuticals Inc (LPI), the American subsidiary of Indian drug manufacturers Lupin Ltd, to sell Pioglitazone Tablets in the U.S market. The approval has been granted first for fiscal 2015.  Pioglitazone is a generic medicine used for managing diabetes and is a version of Actos tablets...
Infrared Sensors can Soon Be Used to Develop Night-Vision Lenses - A New Discovery Confirms
Apr 8, 2014  
People who fear the dark may soon have a reason to rejoice – an infrared sensor that can eventually be used for mechanizing night-vision lenses has been developed. This effectively means that one can also see through dark with the help of these lenses.  This technology seems possible all due to graphene, a layer of tightly packed carbon atoms that has allowed the creation of...