ResearchMoz

Batteries & Supercapacitors in Consumer Electronics 2013-2023: Forecasts, Opportunities, Innovation

IDTechEx
Published Date » 2014-02-01
No. Of Pages » 324
   
 Mobile phone and laptop sales have increased consistently by double digits in the last years. Now with the presence of smartphones and tablet PCs this trend will boost in the following years. This new age of communications, information and portability would not have been possible without energy storage solutions to power these portable devices. 
   
 Lithium batteries are currently the dominant technology in the energy storage space because of their superior energy density characteristics. The consumer electronics industry has pushed their production to the scale of billions and consequently, through economies of scale, optimized its supply chain and reduced their price. However, lithium battery technology capabilities are being challenged by the modern multifunctional...
TABLE OF CONTENT

1. EXECUTIVE SUMMARY AND CONCLUSIONS
1.1. Objective of this report
1.2. Batteries, Supercapacitors and Alternative Energy Storage for Smart and Portable Electronic devices in context
1.3. IDTechEx forecasts
1.4. Total global battery market
1.5. Rechargeable batteries by use
1.6. Cost Drivers and Cost Structure of Lithium Ion Batteries
1.6.1. Cost Structure of Lithium Ion batteries
1.6.2. Paths for further cost reductions on Lithium-ion Batteries
1.7. 138 Lithium-based Rechargeable Battery Manufacturers - Chemistry, Strategy, Success, Potential
1.8. Power requirements of small devices
1.8.1. Power Demand and Specific Power
1.8.2. Capacity, Energy Density and Specific Power
1.9. The Consumer Electronics game is changing: a role for supercapacitors?
1.9.1. Smartphones and Tablet PCs are changing the game of consumer electronics
1.9.2. An analysis of power consumption in Smartphones
1.9.3. A role for supercapacitors in the consumer electronics market
1.10. Alternative directions
1.10.1. Transparent Smartphone
1.10.2. Spray Painted Batteries
1.10.3. Flexible Smartphone
1.10.4. New market drivers
1.11. Conclusions
1.12. Wearable Electronics Can Favour Supercapacitors but the big New Market is for Li-ion

2. INTRODUCTION
2.1. Small electrical and electronic devices
2.2. Popular chemistry and shape
2.3. What is a battery?
2.3.1. Battery definition
2.3.2. Analogy to a container of liquid
2.3.3. Construction of a battery
2.3.4. Many shapes of battery
2.3.5. Single use vs rechargeable batteries
2.3.6. Challenges with batteries in small devices
2.4. What is a capacitor?
2.4.1. Capacitor definition
2.4.2. Analogy to a spring
2.4.3. Capacitor construction
2.5. Limitations of energy storage devices
2.5.1. The electronic device and its immediate support
2.5.2. Safety
2.5.3. Improvement in performance taking place
2.6. Standards

3. RECHARGEABLE BATTERIES
3.1. Technology successes and failures
3.2. Lithium ion
3.2.1. Formats of the leading forms of battery
3.2.2. Cost Drivers of Lithium Ion Batteries.
3.2.3. Materials Cost Drivers
3.2.4. Improvements in specific energy and/or energy density
3.2.5. Anode New Materials Development
3.2.6. Cathode New Materials Improvement
3.2.7. Improvements in Power
3.2.8. Improvements in safety and reliability
3.2.9. The Lithium Batteries of the Future
3.2.10. Materials and economies of scale
3.2.11. Manufacturing cost drivers

4. TRENDS IN SMART AND PORTABLE DEVICES
4.1. Evolution of Markets for Lithium Ion Batteries
4.2. Forecast for Smart and Portable Devices
4.3. Trends in Smart and Portable Electronic Devices
4.3.1. Increasing Multifunctionality: From Simon to IPhone.
4.3.2. Is the race for the thinnest mobile in the market over?
4.3.3. The iPad
4.3.4. IPhone and Nokia want a piece of Cannon and Nikkon's market- Can Supercapacitors play a role on this strategy?
4.3.5. Power Efficiency due to Multiple Core Processors in Smartphones
4.4. Supercapacitors as a solution for peak power requirements in smart and portable devices
4.4.1. An analysis of power consumption in Smartphones
4.4.2. Digital Cameras Flash - why today's digital cameras need a more powerful flash
4.4.3. Laptop Solid State Drives use Supercapacitors

5. SINGLE USE BATTERIES AND ALTERNATIVE ENERGY STORAGE
5.1. Energy Storage for Wireless Sensors and RFID
5.1.1. Customised and AAA/AA Batteries
5.1.2. Planar Energy Devices
5.1.3. Primary battery life extension
5.1.4. Always Ready Smart Nano Battery
5.1.5. Energy Storage of batteries in standard and laminar formats
5.1.6. Future options for higher energy density
5.1.7. Laminar Fuel Cells
5.1.8. Tadiran Batteries twenty year batteries

6. NEW SHAPES - LAMINAR AND FLEXIBLE BATTERIES
6.1. Laminar lithium batteries
6.2. Laminar printed manganese dioxide batteries
6.2.1. Printed battery construction
6.2.2. Printed battery production facilities
6.2.3. Applications of printed batteries
6.2.4. Printed battery specifications
6.3. Ultrathin battery from Front Edge Technology
6.4. Nanotube flexible battery
6.5. Transparent battery - NEC and Waseda University
6.6. Battery Assembly through Spray Painting
6.7. Other emerging needs for laminar batteries - apparel and medical
6.7.1. Electronic apparel
6.7.2. Wireless body area network
6.8. Biobatteries do their own harvesting
6.9. Battery that incorporates energy harvesting - FlexEl
6.10. Microbatteries built with viruses
6.11. Biomimetic energy storage system
6.12. Magnetic spin battery

7. SUPERCAPACITORS
7.1. Example of capacitor storage application - e-labels
7.2. Many shapes of capacitor
7.3. Capacitors for small devices
7.4. What does a supercapacitor for small devices look like?
7.5. Supercapacitors = Ultracapacitors
7.6. Where supercapacitors fit in
7.7. Advantages and disadvantages
7.8. How it all began
7.9. Applications
7.10. Uses in small devices.
7.11. Relevance to energy harvesting
7.11.1. Perpetuum harvester
7.11.2. Human power to recharge portable electronics
7.11.3. Use in nanoelectronics
7.12. Can supercapacitors replace capacitors?
7.13. Can supercapacitors replace batteries?
7.14. Electric vehicle demonstrations and adoption
7.15. How an EDLC supercapacitor works
7.15.1. Basic geometry
7.15.2. Properties of EDL
7.15.3. Charging
7.15.4. Discharging and cycling
7.15.5. Energy density
7.15.6. Achieving higher voltages
7.16. Improvements coming along
7.16.1. Better electrodes
7.16.2. Better electrolytes
7.16.3. Better carbon technologies
7.16.4. Carbon nanotubes and Graphene
7.16.5. Carbon aerogel
7.16.6. Solid activated carbon
7.16.7. Carbon derived carbon
7.16.8. Fast charging is achieved
7.17. Microscopic supercapacitors become possible
7.17.1. Graphene
7.18. Flexible, paper and transparent supercapacitors
7.18.1. University of Minnesota
7.18.2. University of Southern California
7.18.3. Rensselaer Polytechnic Institute USA
7.19. Woven wearable supercapacitors
7.20. National University of Singapore: a competitor for supercapacitors?
7.21. Handling surge power in electronics
7.22. Wireless systems and Burst-Mode Communications
7.23. Energy harvesting
7.23.1. Bicycles and wristwatches
7.23.2. Polyacenes or polypyrrole
7.23.3. New shapes
7.23.4. Human power to recharge portable electronics
7.24. Using a supercapacitor to manage your power
7.24.1. A glimpse at the new magic
7.25. Supercabatteries or bacitors

8. ORGANISATION PROFILES
8.1. Blue Spark Technologies USA
8.2. Cap-XX Australia
8.3. Celxpert Energy Corp. Taiwan Head Quarter
8.4. Cymbet USA
8.5. Permanent Power for Wireless Sensors - White Paper from Cymbet
8.6. DYNAPACK
8.7. Duracell USA
8.8. Enfucell Finland
8.9. Excellatron USA
8.10. Front Edge Technology USA
8.11. Frontier Carbon Corporation Japan
8.12. Harvard University USA
8.13. Hitachi Maxell
8.14. Holst Centre Netherlands
8.15. Infinite Power Solutions USA
8.16. Institute of Bioengineering and Nanotechnology Singapore
8.17. Lebônê Solutions South Africa
8.18. Lifeline Energy
8.19. LG Chem
8.20. Lilliputian Systems
8.21. Massachusetts Institute of Technology USA
8.22. Maxwell Technologies Inc., USA
8.23. Murata Japan
8.24. National Renewable Energy Laboratory USA
8.25. NEC Japan
8.26. Nippon Chemi-Con Japan
8.27. Oak Ridge National Laboratory USA
8.28. Panasonic Japan
8.29. Paper Battery Company USA
8.30. Planar Energy Devices USA
8.31. Renata Batteries
8.32. ReVolt Technologies Ltd
8.33. Sandia National Laboratory USA
8.34. SIMPLO TECHNOLOGY CO. LTD
8.35. Solicore USA
8.36. Sony Japan
8.37. Technical University of Berlin Germany
8.38. University of California Los Angeles USA
8.39. University of Michigan USA
8.40. Tadiran Batteries
8.41. University of Sheffield UK
8.42. University of Wollongong Australia
8.43. Waseda University

9. MARKETS AND FORECASTS
9.1. Market for energy storage for smart and portable electronic devices
9.1.1. IDTechEx forecasts
9.2. Total global battery market
9.3. Batteries for Active RFID and Wireless Sensors Networks
9.3.2. Batteries for gift cards
9.3.3. Batteries for car keys
9.4. Printed and thin film batteries 2013-2023
9.5. Forecast assumptions and Reality Checks
9.5.1. Rechargeable Energy Storage for Smart and Portable electronic devices.
9.5.2. Global Battery Outlook
9.5.3. Supercapacitors

10. GLOSSARY

List of Tables

NA

List of Figures

NA

Upcoming Reports:

High Performance Computing Market - Global Industry Analysis, Size, Share, Growth, Trends And Forecast, 2013 - 2019
By - Transparency Market Research
High Performance computing is defined as aggregation of processes for delivering higher and efficient performance as compared to other desktop workstation or computer helping the companies to solve problems related to engineering, business, or science. High performance computers are clusters of more than one processor with node size range from 16 to 64 nodes. High performance computers help to solve problems of recurring and complex operations as individual nodes work together and hence can solve problem more efficiently than one computer. High performance computing has wide applications...
Hospital Infection Therapeutics Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2012 - 2018
By - Transparency Market Research
Hospital acquired infections are the infections acquired by the patients following the admission in hospitals within 48 hours. These conditions are also known as nosocomial infections. The causative agents of nosocomial infections include various types of microorganisms such as bacteria (Gram-positive and Gram-negative), viruses and fungi. The most common form of pathogens known to cause infections are superbugs such as staphylococcus aureus, escherichia Coli, enterococcus species, pseudomonas aeruginosa and klebshiella pneumonia, etc. Infections of surgical wounds, urinary tract...
Progressive Supranuclear Palsy (PSP) Market - Global Industry Analysis, Size, Share, Growth, Trends And Forecast, 2014 - 2020
By - Transparency Market Research
Palsy is a class of neuro-degenerative disorders affecting many people worldwide. Frequently seen among the geriatric population, palsy is not necessarily endemic to older generation or a specific race, infact they have also been reported in much younger populations, although the reason may be different (trauma/abuse). Progressive supranuclear palsy is a type of palsy, specific to older populations, wherein certain sections of the brain die due to various, yet unknown reasons. The most plausible explanation for PSP found is the variation in the tau protein synthesis that leads to collapse...

Research Assistance

We will be happy to help you find what you need.
Please call us or write us:

866-997-4948 (Us-Canada Toll Free)
Tel: +1-518-618-1030
Email: sales@researchmoz.us
Select License type:

Share this report

Related News

OnePlus One ready to launch it smart phone in India
Jul 28, 2014  
Chinese smart phones are gaining popularity in the Indian market. OnePlus, a Chinese smart phones company, is ready to launch the invitation-only One smart phone in India.  Many Chinese smart phone brands have got inspired by the success of another smart phone brand called Xiaomi which had successfully launched the Mi 3, a smart phone in the Indian market. The OnePlus One is a typical...
Danone all set to sell its business to Hospira
Jul 28, 2014  
According to the Financial Times, Danone, a French dairy group is aiming at selling its business pertaining to medical nutrition to Hospira, a US group. The deal value is estimated at $ 5 billion.  The plan is still in the pipeline as nothing with respect to the business is fully confirmed or certain. Representatives of neither business groups were willing to comment on the same. ...
Loss recorded due to heavy investments carried out by Amazon
Jul 25, 2014  
Amazon.com Inc has been investing in newer businesses like consumer electronics and digital content, due to which it has been running into losses for some time now. The loss recorded in the second quarter was by far the highest. In 2014, the stock prices have dropped by 10% with reduced investor confidence in the long term growth investments. The shares of this US based online retailer...
LG Electronics To Invest Huge Capital in R&D Project in South Korea
Jul 25, 2014  
LG Electronics Inc will invest USD 1.26 billion in the construction of a new research and development unit in South Korea’s capital city Seoul. The facility is said to be part of LG’s Science Park project. The 170,000 square meters site will be built in Magok, Seoul and work is expected to begin from August. Once the construction is complete and ready by 2020, the park will house...
Russian Consumer Protection Agency Seeks ban on Some McDonalds Products
Jul 25, 2014  
A lawsuit has been filed in a Moscow court by the Russian consumer protection agency to seek ban on some products from McDonald's Corp's burgers menu, along with its ice creams and shakes menu.  A regional branch of the agency has recently filed a lawsuit asking the court to declare a ban on some products due to some inappropriateness in physical-chemical parameters in the...