Batteries & Supercapacitors in Consumer Electronics 2013-2023: Forecasts, Opportunities, Innovation

Published Date » 2014-02-01
No. Of Pages » 324
 Mobile phone and laptop sales have increased consistently by double digits in the last years. Now with the presence of smartphones and tablet PCs this trend will boost in the following years. This new age of communications, information and portability would not have been possible without energy storage solutions to power these portable devices. 
 Lithium batteries are currently the dominant technology in the energy storage space because of their superior energy density characteristics. The consumer electronics industry has pushed their production to the scale of billions and consequently, through economies of scale, optimized its supply chain and reduced their price. However, lithium battery technology capabilities are being challenged by the modern multifunctional...

1.1. Objective of this report
1.2. Batteries, Supercapacitors and Alternative Energy Storage for Smart and Portable Electronic devices in context
1.3. IDTechEx forecasts
1.4. Total global battery market
1.5. Rechargeable batteries by use
1.6. Cost Drivers and Cost Structure of Lithium Ion Batteries
1.6.1. Cost Structure of Lithium Ion batteries
1.6.2. Paths for further cost reductions on Lithium-ion Batteries
1.7. 138 Lithium-based Rechargeable Battery Manufacturers - Chemistry, Strategy, Success, Potential
1.8. Power requirements of small devices
1.8.1. Power Demand and Specific Power
1.8.2. Capacity, Energy Density and Specific Power
1.9. The Consumer Electronics game is changing: a role for supercapacitors?
1.9.1. Smartphones and Tablet PCs are changing the game of consumer electronics
1.9.2. An analysis of power consumption in Smartphones
1.9.3. A role for supercapacitors in the consumer electronics market
1.10. Alternative directions
1.10.1. Transparent Smartphone
1.10.2. Spray Painted Batteries
1.10.3. Flexible Smartphone
1.10.4. New market drivers
1.11. Conclusions
1.12. Wearable Electronics Can Favour Supercapacitors but the big New Market is for Li-ion

2.1. Small electrical and electronic devices
2.2. Popular chemistry and shape
2.3. What is a battery?
2.3.1. Battery definition
2.3.2. Analogy to a container of liquid
2.3.3. Construction of a battery
2.3.4. Many shapes of battery
2.3.5. Single use vs rechargeable batteries
2.3.6. Challenges with batteries in small devices
2.4. What is a capacitor?
2.4.1. Capacitor definition
2.4.2. Analogy to a spring
2.4.3. Capacitor construction
2.5. Limitations of energy storage devices
2.5.1. The electronic device and its immediate support
2.5.2. Safety
2.5.3. Improvement in performance taking place
2.6. Standards

3.1. Technology successes and failures
3.2. Lithium ion
3.2.1. Formats of the leading forms of battery
3.2.2. Cost Drivers of Lithium Ion Batteries.
3.2.3. Materials Cost Drivers
3.2.4. Improvements in specific energy and/or energy density
3.2.5. Anode New Materials Development
3.2.6. Cathode New Materials Improvement
3.2.7. Improvements in Power
3.2.8. Improvements in safety and reliability
3.2.9. The Lithium Batteries of the Future
3.2.10. Materials and economies of scale
3.2.11. Manufacturing cost drivers

4.1. Evolution of Markets for Lithium Ion Batteries
4.2. Forecast for Smart and Portable Devices
4.3. Trends in Smart and Portable Electronic Devices
4.3.1. Increasing Multifunctionality: From Simon to IPhone.
4.3.2. Is the race for the thinnest mobile in the market over?
4.3.3. The iPad
4.3.4. IPhone and Nokia want a piece of Cannon and Nikkon's market- Can Supercapacitors play a role on this strategy?
4.3.5. Power Efficiency due to Multiple Core Processors in Smartphones
4.4. Supercapacitors as a solution for peak power requirements in smart and portable devices
4.4.1. An analysis of power consumption in Smartphones
4.4.2. Digital Cameras Flash - why today's digital cameras need a more powerful flash
4.4.3. Laptop Solid State Drives use Supercapacitors

5.1. Energy Storage for Wireless Sensors and RFID
5.1.1. Customised and AAA/AA Batteries
5.1.2. Planar Energy Devices
5.1.3. Primary battery life extension
5.1.4. Always Ready Smart Nano Battery
5.1.5. Energy Storage of batteries in standard and laminar formats
5.1.6. Future options for higher energy density
5.1.7. Laminar Fuel Cells
5.1.8. Tadiran Batteries twenty year batteries

6.1. Laminar lithium batteries
6.2. Laminar printed manganese dioxide batteries
6.2.1. Printed battery construction
6.2.2. Printed battery production facilities
6.2.3. Applications of printed batteries
6.2.4. Printed battery specifications
6.3. Ultrathin battery from Front Edge Technology
6.4. Nanotube flexible battery
6.5. Transparent battery - NEC and Waseda University
6.6. Battery Assembly through Spray Painting
6.7. Other emerging needs for laminar batteries - apparel and medical
6.7.1. Electronic apparel
6.7.2. Wireless body area network
6.8. Biobatteries do their own harvesting
6.9. Battery that incorporates energy harvesting - FlexEl
6.10. Microbatteries built with viruses
6.11. Biomimetic energy storage system
6.12. Magnetic spin battery

7.1. Example of capacitor storage application - e-labels
7.2. Many shapes of capacitor
7.3. Capacitors for small devices
7.4. What does a supercapacitor for small devices look like?
7.5. Supercapacitors = Ultracapacitors
7.6. Where supercapacitors fit in
7.7. Advantages and disadvantages
7.8. How it all began
7.9. Applications
7.10. Uses in small devices.
7.11. Relevance to energy harvesting
7.11.1. Perpetuum harvester
7.11.2. Human power to recharge portable electronics
7.11.3. Use in nanoelectronics
7.12. Can supercapacitors replace capacitors?
7.13. Can supercapacitors replace batteries?
7.14. Electric vehicle demonstrations and adoption
7.15. How an EDLC supercapacitor works
7.15.1. Basic geometry
7.15.2. Properties of EDL
7.15.3. Charging
7.15.4. Discharging and cycling
7.15.5. Energy density
7.15.6. Achieving higher voltages
7.16. Improvements coming along
7.16.1. Better electrodes
7.16.2. Better electrolytes
7.16.3. Better carbon technologies
7.16.4. Carbon nanotubes and Graphene
7.16.5. Carbon aerogel
7.16.6. Solid activated carbon
7.16.7. Carbon derived carbon
7.16.8. Fast charging is achieved
7.17. Microscopic supercapacitors become possible
7.17.1. Graphene
7.18. Flexible, paper and transparent supercapacitors
7.18.1. University of Minnesota
7.18.2. University of Southern California
7.18.3. Rensselaer Polytechnic Institute USA
7.19. Woven wearable supercapacitors
7.20. National University of Singapore: a competitor for supercapacitors?
7.21. Handling surge power in electronics
7.22. Wireless systems and Burst-Mode Communications
7.23. Energy harvesting
7.23.1. Bicycles and wristwatches
7.23.2. Polyacenes or polypyrrole
7.23.3. New shapes
7.23.4. Human power to recharge portable electronics
7.24. Using a supercapacitor to manage your power
7.24.1. A glimpse at the new magic
7.25. Supercabatteries or bacitors

8.1. Blue Spark Technologies USA
8.2. Cap-XX Australia
8.3. Celxpert Energy Corp. Taiwan Head Quarter
8.4. Cymbet USA
8.5. Permanent Power for Wireless Sensors - White Paper from Cymbet
8.7. Duracell USA
8.8. Enfucell Finland
8.9. Excellatron USA
8.10. Front Edge Technology USA
8.11. Frontier Carbon Corporation Japan
8.12. Harvard University USA
8.13. Hitachi Maxell
8.14. Holst Centre Netherlands
8.15. Infinite Power Solutions USA
8.16. Institute of Bioengineering and Nanotechnology Singapore
8.17. Lebônê Solutions South Africa
8.18. Lifeline Energy
8.19. LG Chem
8.20. Lilliputian Systems
8.21. Massachusetts Institute of Technology USA
8.22. Maxwell Technologies Inc., USA
8.23. Murata Japan
8.24. National Renewable Energy Laboratory USA
8.25. NEC Japan
8.26. Nippon Chemi-Con Japan
8.27. Oak Ridge National Laboratory USA
8.28. Panasonic Japan
8.29. Paper Battery Company USA
8.30. Planar Energy Devices USA
8.31. Renata Batteries
8.32. ReVolt Technologies Ltd
8.33. Sandia National Laboratory USA
8.35. Solicore USA
8.36. Sony Japan
8.37. Technical University of Berlin Germany
8.38. University of California Los Angeles USA
8.39. University of Michigan USA
8.40. Tadiran Batteries
8.41. University of Sheffield UK
8.42. University of Wollongong Australia
8.43. Waseda University

9.1. Market for energy storage for smart and portable electronic devices
9.1.1. IDTechEx forecasts
9.2. Total global battery market
9.3. Batteries for Active RFID and Wireless Sensors Networks
9.3.2. Batteries for gift cards
9.3.3. Batteries for car keys
9.4. Printed and thin film batteries 2013-2023
9.5. Forecast assumptions and Reality Checks
9.5.1. Rechargeable Energy Storage for Smart and Portable electronic devices.
9.5.2. Global Battery Outlook
9.5.3. Supercapacitors


List of Tables


List of Figures


Upcoming Reports:

Capacitive Sensors Market - Global Industry Analysis, Market Size, Share, Growth, Trends And Forecast, 2012 - 2018
By - Transparency Market Research
Description Capacitive sensors are devices that enable the measurement of the position of a conductive or nonconductive surface. The high-resolution sensing ability of these sensors makes them highly popular in detection and measurement of position, proximity, acceleration, and fluid levels. Currently, capacitive sensing is widely being used in devices like mobile phones, tables, other mobile devices, laptop trackpads, and in many other applications.   The market for these sensors was valued at USD 7 billion in 2012 and is expected to grow at a CAGR of 13-14% from...
Greece: market of curtains, interior blinds and valances
By - Williams and Marshal Strategy
This report presents a comprehensive overview of the curtains, interior blinds and valances market in Greece and its state as of January 2014. It provides detailed analysis of the industry, its dynamics and structure. The purpose of the report is to describe the state of the curtains, interior blinds and valances market in Greece, to present actual and retrospective information about the volumes and dynamics of production, imports, exports and consumption, the characteristics of the market for the period 2008-2012 and to build a forecast for the market development until 2018. In the same...
Oil Shale Market - Global Industry Analysis, Market Size, Market Share And Forecasts, 2012 - 2018
By - Transparency Market Research
Oil shale generally refers to any sedimentary rock that contains solid bituminous materials that are released as petroleum-like liquids after heating by chemical process of pyrolysis. Oil shale is formed by deposition of organic debris and silt on lake beds and sea bottoms. Over a long period of time, this material is transformed into sedimentary rock by heat and pressure. Oil shales are rich in oil content and can be burned without any additional processing.  With depletion in natural resources, the oil shale market is growing in demand due to large availability of...

Research Assistance

We will be happy to help you find what you need.
Please call us or write us:

866-997-4948 (Us-Canada Toll Free)
Tel: +1-518-618-1030
Select License type:

Share this report

Related News

Ford Motor Co.s Shares Suffer Downfall as Lower Profit Outlook for 2014-2015 Surface
Oct 1, 2014  
Suffering from higher recall costs in its North American market and great losses in South America and Russia have made Ford motor Co. to cut-down its forecast regarding pretax profit this year to $6 billion from $7 billion to $8 billion as earlier mentioned.  Company’s CFO Bob Shanks said that company’s pretax profit in 2015 is expected to rise between $8.5 and $9.5...
Evereadys Kenya Plant to be Shut Down
Sep 30, 2014  
The largest dry-cell battery manufacturer in the region of East Africa, Eveready East Africa Ltd. intends on shutting down its one and only factory in Kenya on the 1st of October 2014. A real estate business will be started in its place. According to the Managing Director of Eveready East Africa Ltd. the plan of shutting down the plant was initiated by the board members of this company...
Sale of Apples iPhones Remains Unaffected - Supported By Consumer Feedback
Sep 29, 2014  
iPhones have been reintroduced in the global market by Apple Inc. in about 22 countries. Consumer reports and feedback basically show that due to the presence of a problem-free backing and update, these handsets are sturdy and do not bend easily. It has been observed via stress tests conducted on iPhone 6 and 6 Plus, that it requires high force and pressure to cause damage to these...
New Malware Targets Pharma Servers
Sep 29, 2014  
The electronics and communication agency Beldon has reportedly spotted a new cyber threat to the pharmaceutical industry. Called Dragonfly, the malware specifically targets intellectual property of servers in the pharmaceutical industry with the purpose of stealing information. An initial report released by stated the malware was targeting the energy sector....
Child’s Success Depends on Father’s Education Level: Study
Sep 24, 2014  
A father’s level of education is the strongest attribute that can determine a child’s success in academics, according to a research conducted in Britain. It also says that there is a self-reinforcing cycle of lack of achievement and poverty that is handed down from parent to child. The report was released by the Office for National Statistics and states that children are...